The development of structures and technologies of manufacturing of heat-resistant radio reflection fabrics for space antennas

Бесплатный доступ

The actuality of the research is due to the rapid development of modern equipment with the use of powerful sources of electromagnetic radiation, as well as the expansion of spheres of their application. The study presents the results of the design and technology of heat-resistant fabric radio reflection that differs from existing analogues by high thermal and radiation resistance, lower surface density, a high value of the reflection coefficient of the electromagnetic radiation with a frequency up to 16 GHz, inclusive. The need for new radio reflection fabric is dictated by the tightening of requirements to materials and structures for space antennas. The aim of this work was to replace existing serial fabric used in the construction of spiral space antennas, radio reflection fabric, made of new combined heat-resistant electrically conductive threads. The combined heat-resistant electrically conducting threads are proposed to develop a twisting-braiding machine of special design. As the core combined threads is proposed to use polyimide or with a para-aramid yarn with a linear density of no more than 8-14 Tex, and the electrically conductive braid to use steel or copper microwire with a diameter of less than 50 microns. Developed threads are characterized by high values of the breaking load, low elongation and low linear density. The process parameters (tension and speed modes) of the manufacture of combined threads and process parameters of the manufacturing process radio reflection fabrics on their basis the transition of weaving are proposed. The basic physico-mechanical properties and electronic characteristics of serial and new radio reflection fabrics have been researched. Designed on the basis of combined heat-resistant conductive thread samples of radio reflection fabrics have a surface density of from 50 to 130 g/m2 with the requirement of not more than 150 g/m2. New samples of fabrics provide radio reflection coefficient of reflection of radiation with a frequency up to 16 GHz at 98 % when demand is not less than 95 %. It was found that the developed fabric has the advantage over the existing fabric in all respects. The result is the introduction of new fabrics in the design of spiral antennas by JSC “Information satellite systems” named after academician M. F. Reshetnev”.

Еще

Para-aramid yarn, heat-resistant conductive thread, radio reflection fabric, electrical characteristics of the fabric

Короткий адрес: https://sciup.org/148177681

IDR: 148177681

Статья научная