Development of the heat panel of the small space apparatus for navigation support
Автор: Kolga V.V., Yarkov I.S., Yarkova E.A.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Авиационная и ракетно-космическая техника
Статья в выпуске: 3 т.21, 2020 года.
Бесплатный доступ
To clarify the trajectory of the spacecraft in a given orbit, the parameter of unmodeled acceleration is taken into account. Today, in the design and manufacture of a spacecraft to meet the requirements of the technical specifications for the maximum allowable values of unmodeled accelerations during the operation of on-board equipment, it is necessary to take into account the effects of asymmetric heat fluxes from the panels of the spacecraft on the deviation of its center of mass from a given orbit. This article discusses the problem of the influence of asymmetric heat fluxes from the surfaces of the spacecraft emanating from the panels ± Z, + Y (deterministic and non-deterministic component) on the level of unmodeled accelerations, which significantly affects the trajectory of the spacecraft. In order to meet the requirements for the temperature control system in terms of ensuring efficient heat removal from the on-board equipment devices and its distribution over the surface of the instrument installation panel, it is necessary to significantly improve the technical characteristics of heat transfer and heat conduction processes in the spacecraft. The analysis of the current thermal control system in modern satellites is carried out and its shortcomings are revealed. A constructive option is proposed for creating an energy-intensive thermal panel, which allows more efficient heat removal from devices and distribution over the panel. The designed thermal panel is a flat sealed panel of a single complex design of aluminum alloy, made by the additive technology method. The dimensions of the thermal panel are limited by the structural dimensions of the working area of 3D printers. At the moment, the main dimensions reach 600-800 mm. An increase in the working area in the future will enable the installation of large-sized electronic equipment. A two-dimensional mathematical model for calculating heat transfer processes in the designed thermal panel is presented. For the calculation, specific average values are introduced that characterize the effective cross sections for the vapor channels and the wick in the longitudinal and transverse directions, physical parameters (porosity of the wick and its degree of liquid saturation).
Spacecraft, asymmetric heat fluxes, thermal control system, unmodeled accelerations, power thermal panel
Короткий адрес: https://sciup.org/148321987
IDR: 148321987 | DOI: 10.31772/2587-6066-2020-21-3-382-388