Самоконфигурируемый генетический алгоритм на базе множества стратегий поиска в нестационарной среде
Автор: Сопов Е.A.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Математика, механика, информатика
Статья в выпуске: 1 т.16, 2015 года.
Бесплатный доступ
Многие практические задачи проектирования и управления в аэрокосмической отрасли приводят к задачам оптимизации. Подобные задачи являются сложными и затрудняют применение многих методов оптимизации. Более того, многие практические задачи оптимизации являются динамическими и меняются с течением времени. Изменения происходят в параметрах задачи, целевых функциях и/или ограничениях. В этом случае алгоритмы оптимизации должны иметь возможность отслеживать меняющие положение оптимумы и постоянно адаптироваться к новой среде. Ранее было предложено множество подходов для решения задач нестационарной оптимизации. Наилучшие результаты демонстрируют стохастические популяционные алгоритмы, такие как эволюционные и генетические алгоритмы. Представлен новый подход для проектирования генетического алгоритма, включающего множество стратегий поиска, который основан на гибридизации островной модели, кооперативной и конкурирующей коэволюционных схем. Такой подход осуществляет управление взаимодействием многих генетических алгоритмов, что приводит к самоконфигурируемому решению задач оптимизации с априори неизвестной структурой. Представлен краткий обзор проблемы и методов решения задач нестационарной оптимизации. Приводится анализ результатов численных экспериментов на множестве задач, представленных на соревновании по нестационарной оптимизации в рамках международной конференции CEC. Предложенный подход демонстрирует эффективность, сравнимую с другими хорошо изученными подходами для решения задач нестационарной оптимизации. При этом подход имеет существенное преимущество - он не требует привлечения специалиста, так как является самоконфигурируемым и решает задачу оптимизации в автоматизированном режиме.
Динамическая оптимизация, нестационарная оптимизация, самоконфигурация, генетический алгоритм, коэволюция
Короткий адрес: https://sciup.org/148177383
IDR: 148177383