Signal of an autocorrelation low-coherence interferometer probing a layered object by a wave-field with wide angular spectrum

Автор: Lyakin Dmitry Vladimirovich, Ryabukho Vladimir Petrovich

Журнал: Компьютерная оптика @computer-optics

Рубрика: Дифракционная оптика, оптические технологии

Статья в выпуске: 3 т.45, 2021 года.

Бесплатный доступ

The effect of the width of the angular spectrum (numerical aperture) of a broadband-frequency wave-field probing a layered object on the signal of an autocorrelation low-coherence interferometer (ALCI) under spatially coherent and incoherent illumination of the entrance pupil is considered. It is found that under incoherent illumination an increase in the width of the angular spectrum of the field leads to a decrease in the amplitude, a change in the shape and position of the measuring signals of the interferometer due to decorrelation of the object field partial components which have reflected from various inter-layer boundaries inside the object. In the case of coherent illumination, the ALCI signal is formed in a confocal mode, which leads to the amplitude extraction of the measurement signals are determined by the mutual correlations between a partial component reflected from the boundary on which the probing field was focused, and partial components of this field which have reflected from other boundaries within the object. This effect makes it possible to determine parameters of the internal layered structure of an object doing without a-priori structure-related information. In this case, an increase in the numerical aperture of the probing light beam leads to an increase in the systematic error in determining the optical thicknesses of the layers, which can be estimated on the basis of the obtained expressions.

Еще

Interferometry, coherence, autocorrelation low-coherence interferometer, layered object, angular spectrum, numerical aperture

Короткий адрес: https://sciup.org/140257394

IDR: 140257394   |   DOI: 10.18287/2412-6179-CO-821

Статья научная