A comparison of algorithms for supervised classification using hyperspectral data
Автор: Kuznetsov Andrey Vladimirovich, Myasnikov Vladislav Valerievich
Журнал: Компьютерная оптика @computer-optics
Рубрика: Анализ гиперспектральных данных
Статья в выпуске: 3 т.38, 2014 года.
Бесплатный доступ
The present work is concerned with the problem of selecting the best hyperspectral image (HSI) classification algorithm. There are compared the following algorithms in our paper: decision tree using cross-validation function, decision tree C4.5 (C5.0), Bayesian classifier, maximum likelihood classifier, minimizing MSE classifier, including a special case - classification on conjugation, spectral angle mapper classifier(for mean vector and nearest neighbor) and support vector machine (SVM). There are presented experimental results of these algorithms for hyperspectral images received by AVIRIS satellite and during SpecTIR project.
C5.0, svm, hyperspectral image, decision tree, bayes, mse, conjugation classification, spectral angle mapper classification
Короткий адрес: https://sciup.org/14059268
IDR: 14059268