The magnetic anisotropy comparison of polycrystalline and single-crystal Fe3Si films
Автор: Yakovlev I.A.
Журнал: Сибирский аэрокосмический журнал @vestnik-sibsau
Рубрика: Технологические процессы и материалы
Статья в выпуске: 2 т.22, 2021 года.
Бесплатный доступ
High-tech devices improvement requires development of technology and search for new materials from science. To date, the development of the magnetism research field has reached a very broad knowledge, which made it possible to create and study a variety of artificial ferromagnetic materials, which are already actively used in science and technology. The latest scientific knowledge shows that the same material in different states can exhibit different electrical and magnetic properties. So, thin magnetic films are actively used in modern devices. Physical processes in thin films proceed differently than in bulk materials. As a result, the film elements have characteristics that differ from those of bulk samples and make it possible to observe effects that are not characteristic of bulk samples. A film is a thin layer of a bound condensed substance, the thickness of which is compared with the distance of surface forces action; it is a thermodynamically stable or metastable part of a heterogeneous film-substrate system. Further study of film structures led to the creation and study of multilayer magnetic systems. In such structures, the presence of both various ferromagnetic materials layers and non-ferromagnetic interlayers is possible, and the multilayer systems properties can differ significantly from the properties of any system components. These materials also have many applications for practice, including radio communications and geological exploration. In our experiment, ferromagnetic thin films of Fe3Si silicide were synthesized by molecular beam epitaxy with co-deposition of Fe and Si. A polycrystalline silicide film was obtained on a SiO2/Si(111) substrate, and a single crystal film was on Si(111)7×7. The structure was investigated using the diffraction of reflected fast electrons directly during the growth process. The magnetic anisotropy of the obtained samples was studied by the ferromagnetic resonance. It was found that the polycrystalline film is characterized by uniaxial magnetic anisotropy, which is 13.42 Oe and is formed as a result of “oblique” deposition. And the magnetic anisotropy for a single-crystal Fe3Si film is formed to a greater extent by internal magnetocrystalline forces.
Magnetic anisotropy, ferromagnetic films, Fe3Si, molecular beam epitaxy
Короткий адрес: https://sciup.org/148322037
IDR: 148322037 | DOI: 10.31772/2712-8970-2021-22-2-398-405