Solid-phase synthesis of titanium substituted barium hexaferrite BaFe12-xTixO19

Автор: Vinnik D.A., Klygach D.S., Chernukha A.S., Zhivulin V.E., Galimov D.M., Starikov A.Yu., Rezviy A.V., Semyonov M.E., Vakhitov M.G.

Журнал: Вестник Южно-Уральского государственного университета. Серия: Металлургия @vestnik-susu-metallurgy

Рубрика: Физическая химия и физика металлургических систем

Статья в выпуске: 3 т.17, 2017 года.

Бесплатный доступ

This paper presents the results of obtaining a partially substituted binary hexaferrite of BaFe12-xTixO19 by a solid-phase synthesis method. The initial components of the charge - powders Fe2O3, BaCО3 and TiO2 were mixed with a ball mill. The ground powders were compressed into tablets. The pressing was carried out using a metal mold and a hydraulic press. Sintering was carried out using a tube furnace with silicon carbide heaters. The synthesis was carried out at a temperature of 1350 ° C for 3 hours. After that, repeated grinding, pressing and sintering of the samples were carried out at a temperature of 1350 °C for 3 hours. The study of the synthesized samples was carried out by X-ray phase analysis using a Rigaku Ultima IV diffractometer. X-ray patterns were recorded in a range of angles 2θ from 5 to 90 degrees. The chemical composition of the samples was studied using a scanning electron microscope JEOL JSM7001F equipped with an energy dispersive X-ray fluorescence analyzer INCA X-max 80 (Oxford Instruments). As a result of the study, a technique was developed for the preparation of barium-substituted hexaferrite BaFe12-xTixO19 with titanium. Using the X-max 80 energy dispersive x-ray fluorescence analyzer, the chemical composition of the samples is determined. Using X-ray phase analysis (Rigaku Ultima IV), the samples obtained are monophasic.

Еще

Barium ferrite, ti doped barium ferrite, single crystals, magnetic materials

Короткий адрес: https://sciup.org/147157099

IDR: 147157099   |   DOI: 10.14529/met170304

Статья научная