High-performance nano-modified concrete of increased strength and durability

Автор: Kasatkin S.P., Soloviova V.Y., Stepanova I.V., Kuznetsov D.V., Sinitsin D.A.

Журнал: Нанотехнологии в строительстве: научный интернет-журнал @nanobuild

Рубрика: Международное научно-техническое сотрудничество

Статья в выпуске: 6 т.14, 2022 года.

Бесплатный доступ

Introduction. To create concrete with a set of physical and mechanical characteristics, a rational selection of the components of the concrete mix is required, including the use of finely dispersed fillers, including those based on recyclable materials, and a highly effective chemical additive of a certain nature and reactive action, which has a complex effect on concrete system. Methods and materials. The effectiveness of the components in used additive was assessed by changing the indicators of compressive strength, tensile strength in bending, the assessment of which was carried out according to GOST 10180-2012 "Concrete. Methods for determining the strength of control samples. For carrying out scientific and experimental studies, the following materials were used: Portland cement CEM I 42.5N; natural sand; fine microsilica; complex chemical additive with increased plasticizing and reactive effects. Results. The combination of polycarboxylate polymers and nanodispersions of silicon hydroxide enhances the effectiveness of each component, which is reflected in a significant increase in the coefficient of crack resistance of concrete at high compressive strength. It has been established that when using a complex nanopolymer chemical additive, the increase in tensile strength in bending is 67% and it exceeds the increase in compressive strength by more than 30%. Discussion. An increase in hydration activity in the presence of a nanopolymer additive has a positive effect on the compaction of the emerging concrete structure. Confirmation of the formation of a dense and strong structure during the hardening of nanomodified concrete is an increase in the water resistance of concrete by 2.5 times and its frost resistance by more than 2.5 times. Conclusion. The advantage of nanomodified concrete is its increased chemical resistance to carbon dioxide and magnesia corrosion and, in accordance with the index of chemical resistance coefficient, CCSt> 0.8, and GOST R 58895-2020, the developed nanomodified concrete belongs to chemically highly resistant concretes. It is advisable to recommend nanopolymer concrete with high physical and mechanical properties for the manufacture of structures for overhead power transmission lines (OPL).

Еще

High-strength concrete, tensile strength in bending, durability, chemical additive, nanodispersions, plasticizing effect, reactive activity, moisture structures

Короткий адрес: https://sciup.org/142236277

IDR: 142236277   |   DOI: 10.15828/2075-8545-2022-14-6-493-500

Статья научная