24-epibrassinolide mediated changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress

Автор: Kapoor Dhriti, Rattan Amandeep, Gautam Vandana, Kapoor Nitika, Bhardwaj Renu

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.10, 2014 года.

Бесплатный доступ

The present work was conducted to study the effects of 24-EBL on photosynthetic pigments (total chlorophyll, chl a, chl b, carotenoid, anthocyanin and flavonoid content) and activities of antioxidative enzymes (guaiacol peroxidase, catalase, superoxide dismutase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, mono-dehydroascorbate reductase, polyphenol oxidase, glutathione peroxidase and glutathione-S- transferase and protein content) in 7-day old seedlings of Raphanus sativus exposed to cadmium and mercury toxicity. Findings of present study were revealed that brassinolide was proved beneficial for amelioration of Cd and Hg stress by altering various metabolic processes of plant.

Еще

24-ebl, antioxidative enzymes, heavy metal, photosynthetic pigments

Короткий адрес: https://sciup.org/14323880

IDR: 14323880

Список литературы 24-epibrassinolide mediated changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress

  • Aebi, H. (1983) Catalase. In: Methods of enzymatic analysis (Ed. H.U. Bergmeyer). Verlag Chemie., 2, 673-684
  • Ali, B., Hayat, S. and Ahmad, A. (2007) 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum). Environ. Exp. Bot., 59, 217-223
  • Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Photophenoloxidase in Beta vulgaris. Plant Physiol., 24, 1-15
  • Bajguz, A. (2000) Blockage of heavy metal accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol. Biochem., 38, 797-801
  • Benzarti, S., Mohri, S. and Ono, Y. (2008) Plant response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: lettuce, radish and alfalfa. Environ Toxicol., 23(5), 607-616
  • Carlberg, I. and Mannervik, B. (1975) Purification and characterization of the flavoenzyme glutathione reductase fom Rat liver. J. Biol. Chem., 250, 5475-5480
  • Chary, N.S., Kamala, C.T. and Raj, D.S. (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Safety. 69, 513-524
  • Chen, J. and Yang, Z.M. (2012) Mercury toxicity, molecular response and tolerance in higher plants. Biometals, 25(5), 847-857
  • Dalton, D.A., Russell, S.A., Hanus, F.J., Pascoe, G.A., Evans and H.J. (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc. Natl. Acad. Sci., 83, 3811-3815
  • Fariduddin, Q., Hasan, S.A., Ali, B., Hayat, S. and Ahmad, A. (2008) Effect of modes of application of 28-homobrassinolide on mung bean. Turk. J Biol., 32, 17-21
  • Flohe, L. and Gunzler, W.A. (1984) Assays of glutathione peroxidase. Methods Enzymol., 105, 114-121
  • Foyer, C.H., Lopez-Delgado, H., Dat, J.F. and Scott, I.M. (1997) Hydrogen peroxide and glutathione associated mechanisms of acclamatory stress tolerance and signaling. Physiol. Plant., 100, 241-254
  • Habig, W.H., Pabst, M.J. and Jakoby, W.B. (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 246, 7130-7139
  • Hossain, M.A., Nakano, Y. and Asada, K. (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol., 25, 385-395
  • Jaleel, C.A., Jayakumar, K., Xing, Z.C. and Azooz, M.M. (2009) Antioxidant potentials protect Vigna radiata (L.) Wilczek plants from soil cobalt stress and improve growth and pigment composition. Plant Omics J., 2, 120-126
  • Kandelinskaya, O.L., Topunov, A.F. and Grishchenko, E.R. (2007) Biochemical Aspects of Growth-Stimulating Effects of Steroid Phytohormones on Lupine Plants. Appl. Biochem. Microbiol., 43(3), 324-331
  • Kartal, G., Temel, A., Arican, E. and Gozukirmizi, N. (2009) Effects of brassinosteroids on barley root growth, antioxidant system and cell division. Plant Growth Regul., 58, 261-267
  • Khripach, V.A., Zhabinskii, V.N. and de-Groot, A.E. (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann. Bot., 86, 441-447
  • Kim, S.J., Gao, J.J., Lee, W.C., Ryu, K.S., Lee, R.R. and Kim, Y.C. (1999). Antioxidative flavonoids from the leaves of Morus alba. Arch. Pharm., 22(1), 81-85
  • Kleizaith, V., Cesniene, T. and Rancelis, V. (2004) The use of cobalt-induced chlorophyll morphoses for studying Co2+ interactions with cysteine and SOD. Plant Sci., 167(6), 1249-1256
  • Kono, Y. (1978) Generation of superoxide radical during autooxidation of hydroxylamine and an assay for superoxide dismutase. Arch. Biochem. Biophys., 186, 189-195
  • Kovalchuk, O., Titov, V. and Hohn, B. (2001) A sensitive transgenic plant system to detect toxic inorganic compounds in the environment. Nature Biotechnol., 19(6), 568-572
  • Kumar, K.B. and Khan, P.A. (1982) Peroxidase and polyphenol oxidase in excised ragi (Eleusine coracana cv. PR 202) leaves during senescence. Indian J. Exp. Bot., 20, 412-416
  • Lindsey, K., Pullen, M.L. and Topping, J.F. (2003) Importance of plant sterols in pattern formation and hormone signaling. Trends Plant Sci., 8, 521-525
  • Lowry, O.H., Rosenbrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with folin-phenol reagent. J. Biol. Chem., 193, 265-275
  • MacLachlan, S. and Zalik, S. (1963) Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley. Can. J. Bot., 41, 1053-1060
  • Mancinelli, A.L. (1984). Photoregulation of anthocyanin synthesis. VIII. Effects of light pretreatments. Plant Physiol., 75, 447-453
  • Mittler, R.S., Vanderauwera, M., Gollery, F. and Van Breusegem, F. (2004) Reactive oxygen gene network of plants. Trends Plant Sci., 9, 490-498
  • Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific-peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, 867-880
  • Pietrini, F., Iannelli, M.A., Pasqualini, S. and Massacci A. (2003). Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol., 133, 829-837
  • Putter, J. (1974). Peroxidase. In: Methods of enzymatic analysis, (Ed. H.U. Bergmeyer) Weinhan. Verlag Chemie., 2, 685-690
  • Rady, M.M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticult., 129, 232-237
  • Ryu, H., Cho, H., Kim, K. and Hwang, I. (2010). Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling. Mol. Cells., 29(3), 283-290
  • Sedlak, J. and Lindsay, R.H. (1968) Estimation of total, proteinbound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal. Biochem., 25, 192-205
  • Seth, C.S., Remans, T., Keunen, E., Jozefczak, M., Gielen, H., Opdenakker, K., Weyens, N., Vangronsveld, J. and Cuypers, A. (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ., 35, 334-346
  • Sharma, I., Pati, P.K. and Bhardwaj, R. (2011) Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity. Ecotoxicol., 20, 862-874
  • Sharma, P., Bhardwaj, R., Arora, N. and Arora, H.K. (2007) Effect of 28-homobrassinolide on growth, Zn metal uptake and antioxidative enzyme activities in Brassica juncea L. seedlings. Braz. J. Plant Physiol., 19(3), 203-210
  • Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F. and Nogues, S. (2004) A role for brassinosteroids in regulation of photosynthesis in Cucumis sativus. J. Exp. Botan., 55, 1135-1143
Еще
Статья научная