3D measurement using fringe projection profilometry

Автор: Alkhatib M.N., Shmelev Yu.D., Tyshova O.A., Sinilshchikov I.V., Bobkov A.V.

Журнал: Компьютерная оптика @computer-optics

Рубрика: Дифракционная оптика, оптические технологии

Статья в выпуске: 6 т.47, 2023 года.

Бесплатный доступ

This work is devoted to measuring the depth of the 3D object using the structured light method, in particular, phase shift profilometry. Theoretical studies on the methods of three-dimensional measurement systems and fringe projection profilometry are presented. The phase shift profilometry method with an improved calculation of the frequency of sinusoidal patterns is applied. In practical implementation in the environment (20 cm × 30 cm), the algorithm is tested on a stepped object consisting of eight steps with a difference of 150 mm between two successive steps. In this case, the achievable error for measuring such an object is 20 mm. Our method has great potential in industrial applications where the measurement of the smoothing of the surface of the object is needed to find the defect in the surface with high accuracy without contacting the object.

Еще

Fringe projection profilometry fpp, structured light

Короткий адрес: https://sciup.org/140303258

IDR: 140303258   |   DOI: 10.18287/2412-6179-CO-1297

Список литературы 3D measurement using fringe projection profilometry

  • Li Z, Liu X, Wen S, et al. In situ 3D monitoring of geometric signatures in the powder-bed-fusion additive manufacturing process via vision sensing methods. Sensors 2018; 18(4): 1180.
  • Carbone V, Carocci M, Savio E, Sansoni G, De Chiffre L. Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces. Int J Adv Manuf Technol 2001; 17(4): 263-271.
  • Cui Y, Schuon S, Chan D, Thrun S, Theobalt C. 3D shape scanning with a time-of-flight camera. 2010 IEEE Computer Society Conf on Computer Vision and Pattern Recognition 2010: 1173-1180.
  • Alkhatib M, Bobkov A, Zadoroznaya N. Camera pose estimation based on structure from motion. Procedia Comput Sci 2021; 186: 146-153.
  • Hu Y, Chen Q, Feng S, Tao T, Asundi A, Zuo C. A new microscopic telecentric stereo vision system-calibration, rectification, and three-dimensional reconstruction. Opt Lasers Eng 2019; 113: 14-22.
  • Spagnolo GS, Cozzella L, Leccese F. Fringe projection profilometry for recovering 2.5 D shape of ancient coins. Acta IMEKO 2021; 10(1): 142.
  • Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl Opt 1983; 22(24): 3977-3982.
  • Zuo C, Feng S, Huang L, Tao T, Yin W, Chen Q. Phase shifting algorithms for fringe projection profilometry: A review. Opt Lasers Eng 2018; 109: 23-59.
  • Gorthi SS, Rastogi P. Fringe projection techniques: whither we are? Opt Lasers Eng 2010; 48(2): 133-140.
  • Srinivasan V, Liu HC, Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects. Appl Opt 1984; 23(18): 3105-3108.
  • Moreno D, Taubin G. Simple, accurate, and robust projector-camera calibration. 2012 Second Int Conf on 3D Imaging, Modeling, Processing, Visualization & Transmission 2012: 464-471.
  • Saldner HO, Huntley JM. Temporal phase unwrapping: application to surface profiling of discontinuous objects. Appl Opt 1997; 36(13): 2770-2775.
  • Zuo C, Huang L, Zhang M, Chen Q, Asundi A. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review. Opt Lasers Eng 2016; 85: 84-103.
  • Zhang S. Comparative study on passive and active projector nonlinear gamma calibration. Appl Opt 2015; 54(13): 3834-3841.
  • Yu J, Gao N, Zhang Z, Meng Z. High sensitivity fringe projection profilometry combining optimal fringe frequency and optimal fringe direction. Opt Lasers Eng 2020; 129: 106068.
  • Pan B, Kemao Q, Huang L, Asundi A. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry. Opt Lett 2009; 34(4): 416-418.
Еще
Статья научная