6-aperiodic words over the three-letter alphabet

Автор: V. I. Senashov

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Informatics, computer technology and management

Статья в выпуске: 3 vol.21, 2020 года.

Бесплатный доступ

The work is devoted to the study of sets of aperiodic words over a finite alphabet. A set of such words can be considered as some kind of finite formal language. W. Burnside raised the issue of local finiteness of periodic groups. The negative answer was given only sixty years later by E. S. Golod. Soon S. V. Aleshin, R. I. Hryhorczuk, V. I. Sushchanskii constructed more examples confirming the negative answer to Burnside's question. Finiteness of the free Burnside group of period n was established for periods two and three (W. Burnside), for period four (W. Burnside, I. N. Sanov), for period six (M. Hall). The infinity of such a group, for odd indicators exceeding 4381, is established in the work of P. S. Novikov and S. I. Adyan (1967), and for odd indicators exceeding 664 in the book by S. I. Adian (1975). A more intuitive version of the proof for odd n > 1010 was proposed by A. Yu. Olshansky (1989). In this article, we consider the set of 6-aperiodic words. In the monograph by S. I. Adyan (1975) it was shown the proof of S. E. Arshon (1937) theory that there are infinitely many three-aperiodic words of any length in the two-letter alphabet. In the book of A. Y. Olshansky (1989), a proof of the infinity of the set of six-aperiodic words is given and an estimate of the number of such words of any given length is obtained. Here we try to estimate the function of the number of six-aperiodic words of any given length in a three-letter alphabet. The results obtained can be useful for encoding information in space communication sessions.

Еще

Locally finite group, word, aperiodicity, estimate, formal language.

Короткий адрес: https://sciup.org/148321754

IDR: 148321754   |   DOI: 10.31772/2587-6066-2020-21-3-333-336

Список литературы 6-aperiodic words over the three-letter alphabet

  • Burnside W. [On an unsettled question in the theory of discontinuous groups]. Quart. J. Pure. Appl. Math. 1902, Vol. 33, P. 230–238.
  • Novikov P. S., Adyan S. I. [On infinite periodic groups]. Izv. AN SSSR, Ser. mat. 1968, No. 1 (32), P. 212–244 (In Russ.).
  • Novikov P. S., Adyan S. I. [On infinite periodic groups. II]. Izv. AN SSSR, Ser. mat. 1968, No. 2 (32), P. 251–524 (In Russ.).
  • Novikov P. S., Adyan S. I. [On infinite periodic groups. III]. Izv. AN SSSR, Ser. mat. 1968, No. 3 (32), P. 709–731 (In Russ.).
  • Adyan S. I. Problema Bernsayda i tozhdestva v gruppakh [The Burnside Problem and Identities in Groups]. Moscow, Nauka Publ., 1975, 336 p.
  • Adyan S. I. [Burnside's problem and related questions]. Uspekhi Mat. sciences. 2010. Vol. 65, Issue. 5 (395), P. 5–60 (In Russ.).
  • Thue A. Uber unendliche Zeichenreih. Norcke Vid. Selsk. skr., I Mat. Nat. Kl. Christiania. 1906. Bd. 7. P. 1–22.
  • Arshon S. E. [Proof of existence of n -unit infinite asymmetric sequences]. Mat. sb. 1937, No. 4(2 (44)), P. 769–779 (In Russ.).
  • Olshansky A. Yu. Geometriya opredelyayushchikh sootnosheniy v gruppakh [Geometry of defining relations in groups]. Moscow, Nauka Publ., 1989. 448 p.
  • Senashov V. I. [Aperiodic words]. Reshetnevskiye chteniya: materialy XIX Mezhdunar. nauch.-prakt. konf., posvyashch. 55-letiyu Sib. gos. aerokosmich. un-ta im. akad. M. F. Reshetneva [Reshetnev Readings: materials of XIX Intern. scientific and practical. conf. for 55th anniversary of Sib. State. Aerokosmich. Univ. Acad. M. F. Reshetnev] (10-14 Nov. 2015, Krasnoyarsk). Krasnoyarsk, 2015, part 2, P. 132–133 (In Russ.).
  • Senashov V. I. [Improved estimates of the number 6-aperiodic words of fixed length]. Vestnik SibGAU. 2016, Vol. 17, No. 2, P. 168–172 (In Russ.).
  • Senashov V. I. [Estimation of the number of 5-aperiodic words]. Vestnik Tuvinskogo gos. un-ta. Tekhn. i fiz.-mat. nauki. 2017, No. 3, P. 132–138 (In Russ.).
  • Senashov V. I. [Estimation of the number of 12-aperiodic words of fixed length]. Vestnik SibGAU. 2017, Vol. 18, No. 1, P. 93–96 (In Russ.).
Еще
Статья научная