A case analysis on different registration methods on multi-modal brain images

Автор: Deepti Nathawat, Manju Mandot, Neelam Sharma

Журнал: International Journal of Modern Education and Computer Science @ijmecs

Статья в выпуске: 8 vol.10, 2018 года.

Бесплатный доступ

Many applications of artificial vision need to compare or integrate images of the same object but obtained at different moments of time with different devices (cameras), from different positions, under different conditions, etc. These differences in capture give rise to images with important relative geometric differences that prevent these "Fit" with precision over each other. The registry eliminates these geometric differences so that located pixels in the same coordinates correspond to the same point of the object and, therefore, both images can easily be compared or integrated. The registration of images is essential in disciplines such as remote sensing, radiology, robotic vision, etc. ; Fields, all of them, that overlap images to study environmental phenomena, monitor tumours carcinogenic or to reconstruct the observed scene. This paper also study different measures of similarity used to measure their consistency and a novel procedure is proposed to improve the accuracy of the linear record by pieces. Specifically the elements that influence the estimation are analysed experimentally of probability distributions of the intensity levels of the images. These distributions are the basis for calculating measures of similarity based on entropy as mutual information (MI) or the Entropy correlation coefficient (ECC). Therefore, the effectiveness of these measures depends critically on their correct estimation.

Еще

Entropy Correlation Coefficient, Mutual Information

Короткий адрес: https://sciup.org/15016788

IDR: 15016788   |   DOI: 10.5815/ijmecs.2018.08.05

Список литературы A case analysis on different registration methods on multi-modal brain images

  • Chang, V., 2018. Computational Intelligence for Medical Imaging Simulations. Journal of medical systems, 42(1), p.10.
  • Sotiras, A., Davatzikos, C. and Paragios, N., 2013. Deformable medical image registration: A survey. IEEE transactions on medical imaging, 32(7), pp.1153-1190.
  • Kopperdahl, D.L., Aspelund, T., Hoffmann, P.F., Sigurdsson, S., Siggeirsdottir, K., Harris, T.B., Gudnason, V. and Keaveny, T.M., 2014. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. Journal of Bone and Mineral Research, 29(3), pp.570-580.
  • Lambert, C., Chowdhury, R., Fitzgerald, T., Fleming, S.M., Lutti, A., Hutton, C., Draganski, B., Frackowiak, R. and Ashburner, J., 2013. Characterizing aging in the human brainstem using quantitative multimodal MRI analysis. Frontiers in human neuroscience, 7, p.462.
  • Bailey, D.L. and Willowson, K.P., 2013. An evidence-based review of quantitative SPECT imaging and potential clinical applications. Journal of nuclear medicine, 54(1), pp.83-89.
  • Afshar-Oromieh, A., Avtzi, E., Giesel, F.L., Holland-Letz, T., Linhart, H.G., Eder, M., Eisenhut, M., Boxler, S., Hadaschik, B.A., Kratochwil, C. and Weichert, W., 2015. The diagnostic value of PET/CT imaging with the 68 Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. European journal of nuclear medicine and molecular imaging, 42(2), pp.197-209.
  • Wachinger, C. and Navab, N., 2013. Simultaneous registration of multiple images: Similarity metrics and efficient optimization. IEEE transactions on pattern analysis and machine intelligence, 35(5), pp.1221-1233.
  • Viergever, M.A., Maintz, J.A., Klein, S., Murphy, K., Staring, M. and Pluim, J.P., 2016. A survey of medical image registration–under review. Medical image analysis, 33, pp.140-144.
  • Woo, J., Stone, M. and Prince, J.L., 2015. Multimodal registration via mutual information incorporating geometric and spatial context. IEEE Transactions on Image Processing, 24(2), pp.757-769.
  • Lahat, D., Adali, T. and Jutten, C., 2015. Multimodal data fusion: an overview of methods, challenges, and prospects. Proceedings of the IEEE, 103(9), pp.1449-1477.
  • Elen, A., Choi, H.F., Loeckx, D., Gao, H., Claus, P., Suetens, P., Maes, F. and D'hooge, J., 2008. Three-dimensional cardiac strain estimation using spatio–temporal elastic registration of ultrasound images: A feasibility study. IEEE transactions on medical imaging, 27(11), pp.1580-1591.
  • Paulus, W.J., Tschöpe, C., Sanderson, J.E., Rusconi, C., Flachskampf, F.A., Rademakers, F.E., Marino, P., Smiseth, O.A., De Keulenaer, G., Leite-Moreira, A.F. and Borbély, A., 2007. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. European heart journal, 28(20), pp.2539-2550.
  • Arana-Rueda, E., Pedrote, A., Frutos-López, M., García-Riesco, L., Jiménez-Velasco, A., Sánchez-Brotons, J.A., González-Cotán, F. and Fernández-Pérez, J.M., 2009. Electroanatomical mapping of the esophagus in circumferential pulmonary vein isolation. Revista Española de Cardiología (English Edition), 62(10), pp.1189-1192.
  • Tavard, F., Simon, A., Donal, E., Hernández, A.I. and Garreau, M., 2010, September. Fusion of MSCT imaging, Electro-Anatomical Mapping and Speckle Tracking Echocardiography for the characterization of local electro-mechanical delays in CRT optimization. In Computing in Cardiology, 2010 (pp. 401-404). IEEE.
  • Tavard, F., Simon, A., Leclercq, C., Pavin, D., Hernandez, A. and Garreau, M., 2009, November. Data fusion of left ventricle electro-anatomical mapping and multislice computerized tomography. In Image Processing (ICIP), 2009 16th IEEE International Conference on (pp. 1745-1748). IEEE.
  • Wu, Q., Liang, J. and Yan, D., 2006. Application of dose compensation in image-guided radiotherapy of prostate cancer. Physics in Medicine & Biology, 51(6), p.1405.
  • Schultheiss, T.E., Tomé, W.A. and Orton, C.G., 2012. It is not appropriate to “deform” dose along with deformable image registration in adaptive radiotherapy. Medical physics, 39(11), pp.6531-6533.
  • Varadhan, R., Karangelis, G., Krishnan, K. and Hui, S., 2013. A framework for deformable image registration validation in radiotherapy clinical applications. Journal of applied clinical medical physics, 14(1), pp.192-213.
  • Horn, B.K. and Schunck, B.G., 1981. Determining optical flow. Artificial intelligence, 17(1-3), pp.185-203.
  • Golemati, S., Stoitsis, J.S., Gastounioti, A., Dimopoulos, A.C., Koropouli, V. and Nikita, K.S., 2012. Comparison of block matching and differential methods for motion analysis of the carotid artery wall from ultrasound images. IEEE Transactions on Information Technology in Biomedicine, 16(5), pp.852-858.
  • Je, C. and Park, H.M., 2013. Optimized hierarchical block matching for fast and accurate image registration. Signal Processing: Image Communication, 28(7), pp.779-791.
  • Einecke, N. and Eggert, J., 2014, June. Block-matching stereo with relaxed fronto-parallel assumption. In Intelligent Vehicles Symposium Proceedings, 2014 IEEE (pp. 700-705). IEEE.
  • Topham, N., Synopsys Inc, 2012. Systolic-array based systems and methods for performing block matching in motion compensation. U.S. Patent 8,218,635.
  • Chen, B. and Príncipe, J.C., 2012. Maximum correntropy estimation is a smoothed MAP estimation. IEEE Signal Processing Letters, 19(8), pp.491-494.
  • Markelj, P., Tomaževič, D., Likar, B. and Pernuš, F., 2012. A review of 3D/2D registration methods for image-guided interventions. Medical image analysis, 16(3), pp.642-661.
  • Viergever, M.A., Maintz, J.A., Klein, S., Murphy, K., Staring, M. and Pluim, J.P., 2016. A survey of medical image registration–under review. Medical image analysis, 33, pp.140-144.
  • Wu, Y., Vanness, D.J. and Burnside, E.S., 2013. Using multidimensional mutual information to prioritize mammographic features for breast cancer diagnosis. In AMIA Annual Symposium Proceedings (Vol. 2013, p. 1534). American Medical Informatics Association.
  • Suh, J.W., Scheinost, D., Dione, D.P., Dobrucki, L.W., Sinusas, A.J. and Papademetris, X., 2011. A non-rigid registration method for serial lower extremity hybrid SPECT/CT imaging. Medical image analysis, 15(1), pp.96-111.
  • Andries, B., Lemeire, J. and Munteanu, A., 2018. Optimized wavelet-based texture representation and streaming for GPU texture mapping. Multimedia Tools and Applications, 77(2), pp.2873-2899.
  • Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A. and Gee, J.C., 2011. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage, 54(3), pp.2033-2044.
  • Rhoads, G.B. and Sharma, R.K., Digimarc Corp, 2012. Image processing using embedded registration data to determine and compensate for geometric transformation. U.S. Patent 8,243,980.
  • Riffi, J., Mahraz, A.M. and Tairi, H., 2013. Medical image registration based on fast and adaptive bidimensional empirical mode decomposition. IET Image Processing, 7(6), pp.567-574.
  • Araki, T., Ikeda, N., Dey, N., Chakraborty, S., Saba, L., Kumar, D., Godia, E.C., Jiang, X., Gupta, A., Radeva, P. and Laird, J.R., 2015. A comparative approach of four different image registration techniques for quantitative assessment of coronary artery calcium lesions using intravascular ultrasound. Computer methods and programs in biomedicine, 118(2), pp.158-172.
  • Reuter, M. and Fischl, B., 2011. Avoiding asymmetry-induced bias in longitudinal image processing. Neuroimage, 57(1), pp.19-21.
  • Bouaziz, S., Tagliasacchi, A. and Pauly, M., 2013, August. Sparse iterative closest point. In Computer graphics forum(Vol. 32, No. 5, pp. 113-123). Blackwell Publishing Ltd.
  • Russ, J.C., 2016. The image processing handbook. CRC press.
  • Sotiras, A., Davatzikos, C. and Paragios, N., 2013. Deformable medical image registration: A survey. IEEE transactions on medical imaging, 32(7), pp.1153-1190.
  • Rohr, K. and Wörz, S., 2012, May. An extension of thin-plate splines for image registration with radial basis functions. In Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on (pp. 442-445). IEEE
  • Mahapatra, D. and Sun, Y., 2012. Integrating segmentation information for improved MRF-based elastic image registration. IEEE Transactions on Image Processing, 21(1), pp.170-183.
  • Mani, V.R.S. and Arivazhagan, S., 2013. Survey of medical image registration. Journal of Biomedical Engineering and Technology, 1(2), pp.8-25.
  • Mellor, M. and Brady, M., 2005. Phase mutual information as a similarity measure for registration. Medical image analysis, 9(4), pp.330-343.
  • Xue, Z., Shen, D. and Davatzikos, C., 2004. Determining correspondence in 3-D MR brain images using attribute vectors as morphological signatures of voxels. IEEE transactions on medical imaging, 23(10), pp.1276-1291.
  • Klein, S., Staring, M., Andersson, P. and Pluim, J.P., 2011, September. Preconditioned stochastic gradient descent optimisation for unimodal image registration. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 549-556). Springer, Berlin, Heidelberg.
  • Chen, S., Guo, Q., Leung, H. and Bosse, E., 2011. A maximum likelihood approach to joint image registration and fusion. IEEE Transactions on Image Processing, 20(5), pp.1363-1372.
  • Zhuang, X., Arridge, S., Hawkes, D.J. and Ourselin, S., 2011. A nonrigid registration framework using spatially encoded mutual information and free-form deformations. IEEE transactions on medical imaging, 30(10), pp.1819-1828.
  • Tam, G.K., Cheng, Z.Q., Lai, Y.K., Langbein, F.C., Liu, Y., Marshall, D., Martin, R.R., Sun, X.F. and Rosin, P.L., 2013. Registration of 3D point clouds and meshes: a survey from rigid to nonrigid. IEEE transactions on visualization and computer graphics, 19(7), pp.1199-1217.
  • Liu, A., Lin, W. and Narwaria, M., 2012. Image quality assessment based on gradient similarity. IEEE Transactions on Image Processing, 21(4), pp.1500-1512.
  • Wu, G., Kim, M., Wang, Q. and Shen, D., 2014. S‐HAMMER: Hierarchical attribute‐guided, symmetric diffeomorphic registration for MR brain images. Human brain mapping, 35(3), pp.1044-1060.
  • Duncan, J.S. and Ayache, N., 2000. Medical image analysis: Progress over two decades and the challenges ahead. IEEE transactions on pattern analysis and machine intelligence, 22(1), pp.85-106.
  • Chen, M., Carass, A., Jog, A., Lee, J., Roy, S. and Prince, J.L., 2017. Cross contrast multi-channel image registration using image synthesis for MR brain images. Medical image analysis, 36, pp.2-14.
  • Ferrante, E. and Paragios, N., 2017. Slice-to-volume medical image registration: A survey. Medical image analysis, 39, pp.101-123.
  • Wang, Q., Lin, J. and Yuan, Y., 2016. Salient band selection for hyperspectral image classification via manifold ranking. IEEE transactions on neural networks and learning systems, 27(6), pp.1279-1289.
  • Hwa Kim, W., Bendlin, B.B., Chung, M.K., Johnson, S.C. and Singh, V., 2015. Statistical inference models for image datasets with systematic variations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4795-4803).
  • McGillem, C.D. and Svedlow, M., 1976. Image registration error variance as a measure of overlay quality. IEEE Transactions on Geoscience Electronics, 14(1), pp.44-49.
  • Pluim, J.P., Maintz, J.A. and Viergever, M.A., 2000, October. Image registration by maximization of combined mutual information and gradient information. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 452-461). Springer, Berlin, Heidelberg.
  • Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.C., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P. and Song, J.H., 2009. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage, 46(3), pp.786-802.
  • Maintz, J.A. and Viergever, M.A., 1998. A survey of medical image registration. Medical image analysis, 2(1), pp.1-36.
  • Ma, J., Zhou, H., Zhao, J., Gao, Y., Jiang, J. and Tian, J., 2015. Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Transactions on Geoscience and Remote Sensing, 53(12), pp.6469-6481.
  • Motwani, Manish, Damini Dey, Daniel S. Berman, Guido Germano, Stephan Achenbach, Mouaz H. Al-Mallah, Daniele Andreini et al. "Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis." European heart journal 38, no. 7 (2016): 500-507.
Еще
Статья научная