A chaotic cryptosystem using conjugate transcendental fractal function
Автор: Shafali Agarwal
Журнал: International Journal of Computer Network and Information Security @ijcnis
Статья в выпуске: 2 vol.11, 2019 года.
Бесплатный доступ
A cryptosystem designed by using the combined features of fractal function and chaotic map, provides a secure and real time encryption environment. In this paper, a 2D-chaotic map is employed to create a chaotic key sequence to comply with the requirement of the key sensitivity. The set of initial values of the chaotic map has derived by iterating a conjugate transcendental fractal function (CTFF) i.e. z_(n+1)=conj(sin(z_n^2 ) )+c. The fractal function produced three sets of initial values after iterating it using Picard, Mann, and Ishikawa iteration methods. Resultantly, three chaotic key sequences will be generated by executing 2D Sine Tent composite map (2D-STCM) for each set of initial values. Afterwards, perform zigzag scanning to each key stream to decorrelate the adjacent image pixels and combined them using XOR operation. By using a different summation of plain image pixels for each pixel encryption, improves the cryptosystem resistant against known/chosen-plaintext attack. Moreover, an encryption of a plain image pixel achieved using corresponding key sequence pixel and a previously ciphered pixel value. The proposed encryption/decryption scheme is evaluated using key space analysis, key sensitivity analysis, differential analysis and other statistical analyses. The performance result indicates the given scheme is efficient and reliable to be used with great potential for a secure image transmission application.
2D Sine Tent composite map, Fractal Function, Zigzag Scan, Image Encryption, Diffusion Process
Короткий адрес: https://sciup.org/15015662
IDR: 15015662 | DOI: 10.5815/ijcnis.2019.02.01
Список литературы A chaotic cryptosystem using conjugate transcendental fractal function
- W. Stallings, Cryptography and network security: principles and practice, 4th ed (Upper Saddle River, N.J: Pearson/Prentice Hall, 2006).
- R. C. Hilborn, Chaos and nonlinear dynamics: an introduction for scientists and engineers (Oxford University Press on Demand, 2000).
- A. G. Radwan & S. K. Abd-El-Hafiz, Image encryption using generalized tent map. Electronics, Circuits, and Systems (ICECS), 2013 IEEE 20th International Conference on (IEEE, 2013), pp. 653–656.
- X. Wu, H. Hu, & B. Zhang, Parameter estimation only from the symbolic sequences generated by chaos system. Chaos, Solitons & Fractals, 22 (2004) 359–366.
- R. Rhouma & S. Belghith, Cryptanalysis of a spatiotemporal chaotic cryptosystem. Chaos, Solitons & Fractals, 41 (2009) 1718–1722. https://doi.org/10.1016/j.chaos.2008.07.016.
- S. Li & X. Zheng, Cryptanalysis of a chaotic image encryption method. 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353) (2002), pp. II-708-II–711 vol.2. https://doi.org/10.1109/ISCAS.2002.1011451.
- R. Parvaz & M. Zarebnia, A combination chaotic system and application in color image encryption. Optics & Laser Technology, 101 (2018) 30–41. https://doi.org/10.1016/j.optlastec.2017.10.024.
- Z. Hua, Y. Zhou, C.-M. Pun, & C. P. Chen, 2D Sine Logistic modulation map for image encryption. Information Sciences, 297 (2015) 80–94.
- Z. Hua & Y. Zhou, Image encryption using 2D Logistic-adjusted-Sine map. Information Sciences, 339 (2016) 237–253.
- R. Rhouma & S. Belghith, Cryptanalysis of a chaos-based cryptosystem on DSP. Communications in Nonlinear Science and Numerical Simulation, 16 (2011) 876–884.
- E. Solak, R. Rhouma, & S. Belghith, Cryptanalysis of a multi-chaotic systems based image cryptosystem. Optics Communications, 283 (2010) 232–236.
- C. A. Pickover, Computers, Pattern, Chaos, and Beauty: Graphics from an Unseen World (Courier Corporation, 2001).
- B. B. Mandelbrot, The fractal geometry of nature (WH freeman New York, 1983).
- R. M. Crownover, Introduction to fractals and chaos (Jones & Bartlett Pub, 1995).
- S. Agarwal, Secure Image Transmission Using Fractal and 2D-Chaotic Map. Journal of Imaging, 4 (2018) 17.
- J. Fridrich, Method for encrypting and decrypting data using chaotic maps, 2000.
- Y. Zhou, L. Bao, & C. L. P. Chen, A new 1D chaotic system for image encryption. Signal Processing, 97 (2014) 172–182. https://doi.org/10.1016/j.sigpro.2013.10.034.
- B. Norouzi, S. Mirzakuchaki, S. M. Seyedzadeh, & M. R. Mosavi, A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Multimedia tools and applications, 71 (2014) 1469–1497.
- H. Zhu, C. Zhao, & X. Zhang, A novel image encryption–compression scheme using hyper-chaos and Chinese remainder theorem. Signal Processing: Image Communication, 28 (2013) 670–680.
- X. Wu, Y. Li, & J. Kurths, A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System. PLoS ONE, 10 (2015). https://doi.org/10.1371/journal.pone.0119660.
- H. Zhu, X. Zhang, H. Yu, C. Zhao, & Z. Zhu, A Novel Image Encryption Scheme Using the Composite Discrete Chaotic System. Entropy, 18 (2016) 276.
- X. Wang, S. Wang, Y. Zhang, & K. Guo, A novel image encryption algorithm based on chaotic shuffling method. Information Security Journal: A Global Perspective, 26 (2017) 7–16. https://doi.org/10.1080/19393555.2016.1272725.
- M. Kanafchian & B. Fathi-Vajargah, A Novel Image Encryption Scheme Based on Clifford Attractor and Noisy Logistic Map for Secure Transferring Images in Navy. International Journal of e-Navigation and Maritime Economy, 6 (2017) 53–63. https://doi.org/10.1016/j.enavi.2017.05.007.
- R. Zahmoul, R. Ejbali, & M. Zaied, Image encryption based on new Beta chaotic maps. Optics and Lasers in Engineering, 96 (2017) 39–49. https://doi.org/10.1016/j.optlaseng.2017.04.009.
- Y. Zhou, L. Bao, & C. P. Chen, Image encryption using a new parametric switching chaotic system. Signal processing, 93 (2013) 3039–3052.
- R. Ye & W. Guo, An Image Encryption Scheme Based on Chaotic Systems with Changeable Parameters. International Journal of Computer Network and Information Security, 6 (2014) 37–45. https://doi.org/10.5815/ijcnis.2014.04.05.
- L. Y. Zhang, Y. Liu, C. Wang, J. Zhou, Y. Zhang, & G. Chen, Improved known-plaintext attack to permutation-only multimedia ciphers. Information Sciences, 430 (2018) 228–239.
- X.-Y. Wang, Y.-Q. Zhang, & X.-M. Bao, A novel chaotic image encryption scheme using DNA sequence operations. Optics and Lasers in Engineering, 73 (2015) 53–61.
- W. Zheng, F.-Y. Wang, & K. Wang, An ACP-based Approach to Color Image Encryption Using DNA Sequence Operation and Hyper-chaotic System. (n.d.).
- Q. Zhang, S. Zhou, & X. Wei, An efficient approach for DNA fractal-based image encryption. Appl. Math. Inf. Sci, 5 (2011) 445–459.
- J. M. Vilardy, C. J. Jimenez, & R. Perez, Image encryption using the Gyrator transform and random phase masks generated by using chaos. Journal of Physics: Conference Series, 850 (2017) 012012. https://doi.org/10.1088/1742-6596/850/1/012012.
- M. Ahmad, M. Z. Alam, Z. Umayya, S. Khan, & F. Ahmad, An image encryption approach using particle swarm optimization and chaotic map. International Journal of Information Technology, (2018) 1–9. https://doi.org/10.1007/s41870-018-0099-y.
- Department of Computer Science, Loughborough University, UK, R. S. Bhogal, B. Li, A. Gale, & Y. Chen, Medical Image Encryption using Chaotic Map Improved Advanced Encryption Standard. International Journal of Information Technology and Computer Science, 10 (2018) 1–10. https://doi.org/10.5815/ijitcs.2018.08.01.
- B. Howell, A. Reese, & M. Basile, Fractal Cryptology. New Mexico High School, Supercomputing Challenge Final Report, (2003).
- G. B. Huntress, Encryption using fractal key, US6782101 B1, 2004.
- S. Agarwal, Symmetric Key Encryption using Iterated Fractal Functions. International Journal of Computer Network and Information Security, 9 (2017) 1–9. https://doi.org/10.5815/ijcnis.2017.04.01.
- S. Agarwal & A. Negi, Midgets of Transcendental Superior Mandelbar Set. IJCSI International Journal of Computer Science Issues, 9 (2012) 214–220.
- M. Ivo, R. Jasek, & P. Varacha, Analysis of the Fractal Structures For the Information Encrypting Process. International Journal of Computers, 6 (2012) 224–231.
- S. Kumar, Public key cryptographic system using Mandelbrot sets. Military Communications Conference, 2006. MILCOM 2006. IEEE (IEEE, 2006), pp. 1–5.
- Y. Sun, R. Xu, L. Chen, & X. Hu, Image compression and encryption scheme using fractal dictionary and Julia set. IET Image Processing, 9 (2015) 173–183. https://doi.org/10.1049/iet-ipr.2014.0224.
- M. Mikhail, Y. Abouelseoud, & G. ElKobrosy, Two-Phase Image Encryption Scheme Based on FFCT and Fractals. Security and Communication Networks, (2017). https://doi.org/10.1155/2017/7367518.
- H. Oğraş & M. Türk, A Robust Chaos-Based Image Cryptosystem with an Improved Key Generator and Plain Image Sensitivity Mechanism. Journal of Information Security, 08 (2017) 23–41. https://doi.org/10.4236/jis.2017.81003.
- S. K. Abd-El-Hafiz, A. G. Radwan, S. H. A. Haleem, & M. L. Barakat, A fractal-based image encryption system. IET Image Processing, 8 (2014) 742–752. https://doi.org/10.1049/iet-ipr.2013.0570.
- H.-O. Peitgen, H. Jürgens, & D. Saupe, Chaos and fractals: new frontiers of science (Springer Science & Business Media, 2006).
- W. R. Mann, Mean Value Methods in Iteration. Proceedings of the American Mathematical Society, 4 (1953) 506–510. https://doi.org/10.2307/2032162.
- S. Ishikawa, Fixed points by a new iteration method. Proceedings of the American Mathematical Society, 44 (1974) 147–150.
- D. Arroyo, R. Rhouma, G. Alvarez, S. Li, & V. Fernandez, On the security of a new image encryption scheme based on chaotic map lattices. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18 (2008) 033112.
- W. Xiaofu & S. Songgeng, A general efficient method for chaotic signal estimation. IEEE Transactions on signal processing, 47 (1999) 1424–1428.
- S. S. Hedge & N. B. Rao, Visual cryptography (VC) using zigzag scan approach. J. Comput. Sci. Eng. Technol, 1 (2011) 456–461.
- G. Alvarez & S. Li, Some basic cryptographic requirements for chaos-based cryptosystems. International Journal of Bifurcation and Chaos, 16 (2006) 2129–2151.
- Y. Wang, K.-W. Wong, X. Liao, T. Xiang, & G. Chen, A chaos-based image encryption algorithm with variable control parameters. Chaos, Solitons & Fractals, 41 (2009) 1773–1783.
- C. E. Shannon, Communication theory of secrecy systems. Bell Labs Technical Journal, 28 (1949) 656–715.
- Y. Wu, J. P. Noonan, & S. Agaian, NPCR and UACI randomness tests for image encryption. Cyber journals: multidisciplinary journals in science and technology, Journal of Selected Areas in Telecommunications (JSAT), (2011) 31–38.