Метод создания структурных моделей текстовых документов с использованием нейронных сетей
Автор: Березкин Дмитрий Валерьевич, Козлов Илья Андреевич, Мартынюк Полина Антоновна, Панфилкин Артем Михайлович
Статья в выпуске: 1 т.12, 2023 года.
Бесплатный доступ
В статье описываются современные нейросетевые модели на основе BERT и рассматривается их применение для задач обработки естественного языка (NLP), таких как ответы на вопросы и распознавание именованных сущностей. В статье представлен метод решения задачи автоматического создания структурныхмоделей текстовых документов. Предлагаемый метод является гибридным и основан на совместном использовании нескольких моделей NLP. Метод строит структурную модель документа, извлекая предложения,соответствующие различным аспектам документа. Извлечение информации осуществляется с использованием вопросно-ответной модели BERT с вопросами, подготовленными отдельно для каждого аспекта.Ответы фильтруются с помощью модели распознавания именованных сущностей BERT и используютсядля формирования содержимого каждого поля структурной модели. В статье предложены два алгоритмаформирования содержимого поля - алгоритм выбора исключающего ответа и алгоритм формированияобобщающего ответа, которые используются для коротких и объемных полей соответственно. В статье также описывается программная реализация предлагаемого метода и обсуждаются результаты экспериментов,проведенных для оценки качества метода.
Извлечение информации, нейронная сеть, распознавание именованных сущностей, вопросно-ответная система
Короткий адрес: https://sciup.org/147240345
IDR: 147240345 | DOI: 10.14529/cmse230102