A model and algorithm for sequence alignment

Бесплатный доступ

Lcs, levenshtein metric., diff, edit distance, sequence alignment, similarity of strings, software development

Короткий адрес: https://sciup.org/14336138

IDR: 14336138

Список литературы A model and algorithm for sequence alignment

  • J. W. Hunt, M. D. McIlroy. An algorithm for differential file comparison, Bell Laboratories, 1976, 7 pp.
  • E. W. Myers. An 𝑂(𝑁 𝐷) difference algorithm and its variations//Algorithmica, 1 (1986). P. 251-266.
  • W. R. Pearson. Comparison of methods for searching protein sequence databases//Protein Science, V. 4. No. 6. 1995. P. 1145-1160.
  • T. F. Smith, M. S. Waterman, W. M. Fitch. Comparative biosequence metrics//Journal of Molecular Evolution, V. 18. No. 1. 1981. P. 38-46.
  • P. Baudiˇ. Current concepts in version control systems, 2014, arXiv: s 1405.3496.
  • D. Aldous, P. Diaconis. Longest Increasing Subsequences: From Patience Sorting to the Baik-Dieft-Johansson Theorem//Bull. Amer. Math. Soc., V. 36. No. 4. 1999. P. 413-432.
  • M. Mackall. Towards a Better SCM: Revlog and Mercurial//Proceedings of Linux Symposium. V. 2 (July 19-22, 2006, Ottawa, Ontario, Canada), 2006. P. 83-90, URL http://mercurial.selenic.com/wiki/Presentations?action=AttachFile&do=get&target=ols-mercurial-paper.pdf.
  • S. V. Znamenskij. Modeling of the optimal sequence alignment problem//Program systems: theory and applications, V. 5. No.4. 2014. P. 257-267 (in Russian).
  • W. J. Masek, M. S. Paterson. A faster algorithm computing string edit distances//Journal of Computer and System Sciences, V. 20. No. 1. 1980. P. 18-31.
  • J. W. Hunt, Th. G. Szymanski. Computing Longest Common Subsequences//Communications of the ACM, V. 20. No. 5. 1977. P. 350-353.
  • E. Ukkonen. Algorithms for approximate string matching//Information and Control, V. 64. No. 1-3. 1985. P. 100-118.
  • E. W. Myers, W. Miller. Optimal alignments in linear space//Computer applications in the biosciences, V. 4. No. 1. 1988. P. 11-17.
  • A. Apostolico. String editing and longest common subsequences//Handbook of Formal Languages, Springer, Berlin-Heidelberg, 1997. P. 361-398.
  • A. G. Panin. One algorithm to solve the longest common subsequence problem//Vector nauki TGU, 2010, no.4(14). P. 19-22 (in Russian).
Еще
Статья