Модель "неаддитивной" задачи маршрутизации с функциями стоимости, зависящими от списка заданий
Автор: Ченцов Александр Георгиевич, Салий Ярослав Витальевич
Рубрика: Обзорные статьи
Статья в выпуске: 1 т.8, 2015 года.
Бесплатный доступ
Рассматривается следующий (усложненный) вариант маршрутной задачи "на узкие места": исследуется задача последовательного обхода мегаполисов, осложненная условиями предшествования и тем, что функции стоимости (перемещений и внутренних работ) могут явным образом зависеть от списка заданий, которые не выполнены на данный момент. Процесс перемещений рассматривается в виде совокупности этапов, включающих внешнее перемещение к соответствующему мегаполису и последующее выполнение (внутренних по смыслу) работ, связанных с данным мегаполисом. Качество совокупного процесса оценивается максимумом стоимостей составляющих его этапов; рассматривается задача на минимум упомянутого критерия (получается задача на минимакс, обычно именуемая задачей "на узкие места"). Для построения оптимального решения в виде пары маршрут-трасса (трасса, или траектория, соответствует конкретному варианту прохождения мегаполисов, нумеруемых в соответствии с маршрутом, определяемым в виде перестановки индексов) построен "нестандартный" вариант метода динамического программирования, при реализации которого не используется, в случае ограничений в виде условий предшествования, построение всего массива значений функции Беллмана.
Динамическое программирование, маршрут, условия предшествования
Короткий адрес: https://sciup.org/147159302
IDR: 147159302 | DOI: 10.14529/mmp150102