A Resource Management Model for Healthcare Internet of Things Using Deep Learning and Bio-inspired Algorithms

Автор: Girish Wali, Chetan Bulla

Журнал: International Journal of Information Engineering and Electronic Business @ijieeb

Статья в выпуске: 1 vol.17, 2025 года.

Бесплатный доступ

Healthcare IoT seeks to use technology to better patient care, optimize operational efficiency, and provide remote monitoring and management of health issues. Resource management is crucial in the context of Health Internet of Things (HIoT) since it enhances the performance of healthcare services. This research paper proposes a resource management model in healthcare Internet of Things (IoT) by using deep learning and bio-inspired algorithms. A deep learning model LSTM model is used to resource failure prediction and bio-inspired algorithms are used for resource allocation and load balancing. An accurate prediction of resource utilization and effective resource management algorithm will improve the overall performance of IoT services for Health care application. The proposed approach incorporates deep learning methods to identify and anticipate anomalies, enabling the proactive identification of future problems or resource failures and resource utilization. In addition, bio-inspired algorithms are used to dynamically distribute resources and optimize system performance in real-time. The efficacy of the proposed fault-tolerant method is proved by extensive simulations and performance tests. The experiment results show the improvement in performance parameters as compared to state-of-the-art resource management models.

Еще

HIoT, resource allocation, management, fog computing, optimization, fault tolerance

Короткий адрес: https://sciup.org/15019661

IDR: 15019661   |   DOI: 10.5815/ijieeb.2025.01.05

Список литературы A Resource Management Model for Healthcare Internet of Things Using Deep Learning and Bio-inspired Algorithms

  • S. S. Gill et al., “Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends and open challenges,” Internet of Things (Netherlands), vol. 8, no. October, pp. 1–30, 2019, doi: 10.1016/j.iot.2019.100118.
  • S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,” Proc. - 3rd Work. Hot Top. Web Syst. Technol. HotWeb 2015, pp. 73–78, 2016, doi: 10.1109/HotWeb.2015.22.
  • F. G. Mohammadi, F. Shenavarmasouleh, and H. R. Arabnia, “Applications of Machine Learning in Healthcare and Internet of Things (IOT): A Comprehensive Review,” pp. 1–26, 2022.
  • Z. Wang and Z. Gao, “Analysis of real-time heartbeat monitoring using wearable device Internet of Things system in sports environment,” Comput. Intell., vol. 37, no. 3, pp. 1080–1097, 2021, doi: 10.1111/coin.12337.
  • C. K. Dehury and P. K. Sahoo, “Design and implementation of a novel service management framework for IoT devices in cloud,” J. Syst. Softw., vol. 119, pp. 149–161, 2016, doi: 10.1016/j.jss.2016.06.059.
  • S. P. Singh, R. Kumar, A. Sharma, and A. Nayyar, “Leveraging energy-efficient load balancing algorithms in fog computing,” Concurr. Comput. Pract. Exp., vol. 34, no. 13, pp. 1–16, 2022, doi: 10.1002/cpe.5913.
  • V. Moysiadis, P. Sarigiannidis, and I. Moscholios, “Towards Distributed Data Management in Fog Computing,” Wirel. Commun. Mob. Comput., vol. 2018, no. i, 2018, doi: 10.1155/2018/7597686.
  • B. Jabir and N. Falih, “Big data analytics opportunities and challenges for the smart enterprise,” Int. J. Tech. Phys. Probl. Eng., vol. 13, no. 2, pp. 20–26, 2021, doi: 10.1007/978-3-030-64258-7_70.
  • N. Périvier, C. Hssaine, S. Samaranayake, and S. Banerjee, “Real-time Approximate Routing for Smart Transit Systems,” Proc. ACM Meas. Anal. Comput. Syst., vol. 5, no. 2, 2021, doi: 10.1145/3460091.
  • M. Kaur and R. Aron, “A systematic study of load balancing approaches in the fog computing environment,” J. Supercomput., vol. 77, no. 8, pp. 9202–9247, 2021, doi: 10.1007/s11227-020-03600-8.
  • V. P. Kour and S. Arora, “Recent Developments of the Internet of Things in Agriculture: A Survey,” IEEE Access, vol. 8, pp. 129924–129957, 2020, doi: 10.1109/ACCESS.2020.3009298.
  • Q. D. Ngo, H. T. Nguyen, V. H. Le, and D. H. Nguyen, “A survey of IoT malware and detection methods based on static features,” ICT Express, vol. 6, no. 4, pp. 280–286, 2020, doi: 10.1016/j.icte.2020.04.005.
  • S. Manaseer, M. Alzghoul, and M. Mohmad, “An advanced algorithm for load balancing in cloud computing using MEMA technique,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 3, pp. 36–41, 2019.
  • K. Alatoun, K. Matrouk, M. A. Mohammed, J. Nedoma, R. Martinek, and P. Zmij, “A Novel Low-Latency and Energy- Efficient Task Scheduling Framework for Internet of Medical Things in an Edge Fog Cloud System,” Sensors, vol. 22, no. 14, p. 5327, Jul. 2022, doi: 10.3390/s22145327.
  • S. K. Mishra, B. Sahoo, and P. P. Parida, “Load balancing in cloud computing: A big picture,” J. King Saud Univ. - Comput. Inf. Sci., vol. 32, no. 2, pp. 149–158, 2020, doi: 10.1016/j.jksuci.2018.01.003.
  • S. K. Idrees and A. K. Idrees, “New fog computing enabled lossless EEG data compression scheme in IoT networks,” J. Ambient Intell. Humaniz. Comput., vol. 13, no. 6, pp. 3257–3270, 2022, doi: 10.1007/s12652-021-03161-5.
  • N. Al Mudawi, “Integration of IoT and Fog Computing in Healthcare Based the Smart Intensive Units,” IEEE Access, vol. 10, pp. 59906–59918, 2022, doi: 10.1109/access.2022.3179704.
  • F. M. Talaat, “Effective prediction and resource allocation method (EPRAM) in fog computing environment for smart healthcare system,” Multimed. Tools Appl., vol. 81, no. 6, pp. 8235–8258, 2022, doi: 10.1007/s11042-022-12223-5.
  • K. Wang, Y. Shao, L. Xie, J. Wu, and S. Guo, “Adaptive and Fault-tolerant Data Processing in Healthcare IoT Based on Fog Computing,” IEEE Trans. Netw. Sci. Eng., vol. PP, no. c, p. 1, 2018, doi: 10.1109/TNSE.2018.2859307.
  • D. Rahbari and M. Nickray, “Low-latency and energy-efficient scheduling in fog-based IoT applications,” Turkish J. Electr. Eng. Comput. Sci., vol. 27, no. 2, pp. 1406–1427, 2019, doi: 10.3906/elk-1810-47.
  • M. Bukhsh, S. Abdullah, A. Rahman, M. N. Asghar, H. Arshad, and A. Alabdulatif, “An Energy-Aware, Highly Available, and Fault-Tolerant Method for Reliable IoT Systems,” IEEE Access, vol. 9, no. April 2018, pp. 145363– 145381, 2021, doi: 10.1109/ACCESS.2021.3121033.
  • Z. Ahmad, A. I. Jehangiri, M. A. Ala’anzy, M. Othman, and A. I. Umar, “Fault-tolerant and data-intensive resource scheduling and management for scientific applications in cloud computing,” Sensors, vol. 21, no. 21, 2021, doi: 10.3390/s21217238.
  • S. Math, P. Tam, and S. Kim, “Reliable federated learning systems based on intelligent resource sharing scheme for big data internet of things,” IEEE Access, vol. 9, pp. 108091–108100, 2021, doi: 10.1109/ACCESS.2021.3101871.
  • Y. Liu, J. E. Fieldsend, and G. Min, “A framework of fog computing: Architecture, challenges, and optimization,” IEEE Access, vol. 5, pp. 25445–25454, 2017, doi: 10.1109/ACCESS.2017.2766923.
  • J. Grover and R. M. Garimella, “Reliable and Fault-Tolerant IoT-Edge Architecture,” IEEE, p. 4, 2018.
  • Z. Xiang, D. Malkhi, K. Nayak, and L. Ren, “Strengthened fault tolerance in byzantine fault tolerant replication,” Proc. - Int. Conf. Distrib. Comput. Syst., vol. 2021-July, pp. 205–215, 2021, doi: 10.1109/ICDCS51616.2021.00028.
  • O. Y. Abdulhammed, “Load balancing of IoT tasks in the cloud computing by using sparrow search algorithm,” J. Supercomput., vol. 78, no. 3, pp. 3266–3287, 2022, doi: 10.1007/s11227-021-03989-w.
  • Z. Wang, W. Zhang, X. Jin, Y. Huang, and C. Lu, “An optimal edge server placement approach for cost reduction and load balancing in intelligent manufacturing,” J. Supercomput., vol. 78, no. 3, pp. 4032–4056, 2022, doi: 10.1007/s11227-021-04017-7.
  • H. Tran-dang and D. Kim, “DISCO : Distributed Computation Offloading Framework for Fog Computing Networks,” pp. 1–11, 2022.
  • S. T. Waghmode and B. M. Patil, “Adaptive Load Balancing in Cloud Computing Environment,” Int. J. Intell. Syst. Appl. Eng., vol. 11, pp. 209–217, 2023.
  • A. U. Rehman et al., “Dynamic energy efficient resource allocation strategy for load balancing in fog environment,” IEEE Access, vol. 8, pp. 199829–199839, 2020, doi: 10.1109/ACCESS.2020.3035181.
  • R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “iFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in edge and fog computing environments,” J. Syst. Softw., vol. 190, 2022, doi: 10.1016/j.jss.2022.111351.
  • H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A toolkit for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog computing environments,” Softw. - Pract. Exp., vol. 47, no. 9, pp. 1275–1296, 2017, doi: 10.1002/spe.2509.
  • M. Goudarzi, M. Palaniswami, and R. Buyya, “A Distributed Application Placement and Migration Management Techniques for Edge and Fog Computing Environments,” Proc. 16th Conf. Comput. Sci. Intell. Syst. FedCSIS 2021, pp. 37–56, 2021, doi: 10.15439/2021F005.
  • W. Saeed, Z. Ahmad, A. I. Jehangiri, N. Mohamed, A. I. Umar, and J. Ahmad, “A fault tolerant data management scheme for healthcare internet of things in fog computing,” KSII Trans. Internet Inf. Syst., vol. 15, no. 1, pp. 35–57, 2021, doi: 10.3837/TIIS.2021.01.003.
  • Domanal, S.G., Guddeti, R.M., & Buyya, R. (2020). A Hybrid Bio-Inspired Algorithm for Scheduling and Resource Management in Cloud Environment. IEEE Transactions on Services Computing, 13, 3-15.
  • Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations. Hoboken, NJ, USA: Wiley, 1990
  • K. Nishant, et al., “Load balancing of nodes in cloud using ant colony optimization,” in Proc. UKSim 14th Int. Conf. Comput. Model. Simul., 2012, pp. 3–8.
  • S. Domanal and G. Reddy, “Optimal load balancing in cloud computing by efficient utilization of virtual machines,” in Proc. 6th Int. Conf. Commun. Syst. Netw., 2014, pp. 1–4.
  • S. Saraswathy, J. Malathi, N. Subiksha, S. LakshmiNarayanan, K. S. Kumar and L. Livinesh, "A Hybrid Strategy Integrating Ant Colony Optimization and Locust-Inspired Algorithm (HACO-LA) to Boost Efficiency and Performance in cloud Resource Management," 2024 3rd International conference on Power Electronics and IoT Applications in Renewable Energy and its Control (PARC), Mathura, India, 2024, pp. 387-392, doi: 10.1109/PARC59193.2024.10486486.
  • Meenakshi, Ravindra S, Girish Wali, Chetan Bulla, Jitender Tanwar, Madhava Rao Chunduru, Surjeet, "AI Integrated Approach for Enhancing, Linguistic Natural Language Processing (NLP) Models for Multilingual Sentiment Analysis",Vol. 23 issueNo. 1, Linguistic and Philosophical Investigations, (2024)
  • Wali, Girish, and Chetan Bulla. "Suspicious Activity Detection Model in Bank Transactions using Deep Learning with Fog Computing Infrastructure." International Conference on Computational Innovations and Emerging Trends (ICCIET-2024). Atlantis Press, 2024.
  • Wali, G., Kori, A., Bulla, C., & AIML, K. Market Risk Assessment Using Deep Learning Model and Fog Computing Infrastructure. , .ijramr, 2024.
Еще
Статья научная