A review of lysimeter studies and experiments by considering agricultural production

Автор: Shahrajabian M.H., Sun W.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.20, 2024 года.

Бесплатный доступ

Lysimeters have been used to obtain accurate information for developing calibrating, and validating crop evapotranspiration and crop coefficients for many plants and crops. Lysimeters are also an unique equipment for studying the transport of solutes when saline waters are used, and therefore, for assessing alkalization and salinization hazards. Three main types of lysimeters are used: constatnt water-table lysimeters, drainage lysimeters, and weighing lysimeters. The weighing lysimeters provide scientist the basic information for research related to the evapotranspiration, and they are commonly divided into two types, continuous weighing and intermittent weighing. Lysimeters are foremost devices, typically tanks or containers, that define a specific boundary to contain soil water and permit measurement of either the soil-water balance or the volume of water percolating vertically and its quality. The limitations are expense which depends on design, variable experimental conditions such as climatic/environmental factors which are usually not controlled, the spatial variability is normally less, they are not appropriate for every plant species and even every soil type. The main goal of lysimeter is defining the crop coefficient (Kc) which used to convert Etr to equivalent crop ET (Etc) values, and determining agronomical parameters of crops which are planted on the field of lysimeter. All weather data like air temperature, humidity, solar radiation, and potential evaporation should be obtained onsite, and the frequency and time of measurements should be at least daily. For crop products, the management such as fertilization, sowing tillage, seed bed preparation, and harvest of the lysimeter including its surrounding area is carried out on the basis of good agricultural practice. it may be required to complement natural precipitation by irrigation. The main purpose of this literature review is to give a brief summary about lysimeters, and survey the impacts of lysimeter studies and crops production. The information provides is obtained from randomized control experiments, review articles, and analytical studies and observations which were gathered from numerous literature sources such as Scopus, PubMed, Google Scholar,and Science Direct.

Еще

Crop, lysimeter, weighing lysimeter, leachate, evapotranspiration, crop coefficient

Короткий адрес: https://sciup.org/143182781

IDR: 143182781

Список литературы A review of lysimeter studies and experiments by considering agricultural production

  • Abdou, H. M., & Flury, M. (2004). Simulation of water flow and solute transport in free-drainage lysimeters and field soils with heterogenous structures. European Journal of Soil Science, 55, 229-241. https://doi.org/10.1046/j.1365-2389.2004.00592.x
  • Abhiram, G., McCurdy, M., Davies, C. E., Grafton, M., Jeyakumar, P., & Bishop, P. (2023). An innovative lysimeter system for controlled climate studies. Biosystems Engineering, 228, 105-119. https://doi.org/10.10167j.biosystemseng.2023.03.00 5
  • Ahsan, K., Shaikh, M., Rafizul, I., & Alamgir, M. (2014). Statistical analysis of leachate characteristics in pilot scale landfill lysimeter. International Journal of Advanced Structural Geotechnical Engineering, 3, 283-292.
  • Alatawy, A., Al-Ghobari, H., Mohammad, F., & Dewidar, A. (2019). Lysimeter-based water use and crop coefficient of drip-irrigated potato in an arid environment. Agronomy, 9, 756. https://doi.org/10.3390/agronomy9110756
  • Albers, C. N., Jacobsen, O. S., Bester, K., Jacobsen, C. S., & Carvalho, P. N. (2020). Leaching of herbicidal residues from gravel surfaces - A lysimeter-based study comparing gravels with agricultural topsoil. Environmental Pollution, 266(3), 115225. https://doi.org/10.1016/j.envpol.2020.115225
  • Allen, R. G., & Fisher, K. K. (1990). Low-cost electronic weighing lysimeters. Transactions of the ASAE, 33(6), 1823-1833. https://doi.org/10.13031/2013.31546
  • Allen, R. G., Howell, T. A., Pruitt, W. O., Walter, I. A., & Jensen, M. E. (1999). Lysimeter for evapotranspiration and environmental measurements. American Society of Civil Engineers, New York, NY. 444.
  • Amaral, A. M., Filho, F. R. C., Vellame, L. M., Teixeira, M. B., Soares, F. A. L., & Santos, L. N. S. D. (2018). Uncertainty of weight measuring systems applied to weighing lysimeters. Computers and Electronics in Agriculture, 145, 208-216. https://doi.org/10.1016/j.compag.2017.12.033
  • Arruda Junior, A., & Silva, T. J. A. D. (2023). Construction, calibration and performance evaluation of a lysimeter, with a double weighing system: Hydraulic and mechanical. Smart Agricultural Technology, 4, 100222. https://doi.org/10.1016/j.atech.2023.100222
  • Aston, A. R. (1984). Evaporation from eucalypts growing in a weighing lysimeter: A test of the combination equations. Agricultural & Forest Meteorology, 31(3-4), 241-249. https://doi.org/10.1016/0168-1923(84)90038-8
  • Avila-Davila, L., Soler-Mendez, M., Bautista-Capetillo, C. F., Gonzalez-Trinidad, J., Junez-Ferreira, H. E., Robles Rovelo, C. O., & Molina-Martinez, J. M. (2021). A compact weighing lysimeter to estimate the water infiltration rate in agricultural soils. Agronomy, 11, 180. https://doi.org/10.3390/agronomy11010180
  • Baalousha, H. M., Ramasomanana, F., Fahs, M., & Seers, T. D. (2022). Measuring and validating the acutal evaporation and soil moisture dynamic in arid regions under unirrigated land using smart field lysimeters and numerical modeling. Water, 14, 2787. https://doi.org/10.3390/w14182787
  • Baghanam, A. H., Vakili, A. T., Nourani, V., Dabrowska, D., & Soltysiak, M. (2022). AI-based ensemble modeling of landfill leakage employing a lysimeter, climatic data and transfer learning. Journal of Hydrology, 612(Part B), 128243. https://doi.org/10.1016/j.jhydrol.2022.128243
  • Bergstorm, L. F. (1990). Use of lysimeters to estimate leaching of pesticides in agricultural soils. Environmental Pollution, 67, 325-347. https://doi.org/10.1016/0269-7491(90)90070-s
  • Berwick, P. D., & Sumner, C. J. (1968). An accurate hydraulic-pneumatic weighing lysimeter for general field use. Agricultural Meteorology, 5(1), 5-16. https://doi.org/10.1016/0002-1571(68)90019-8
  • Boll, J., Steenhuis, T. S., & Selker, J. S. (1992). Fiberglass wicks for sampling of water and solutes in the vadose zone. Soil Science Society of America Journal, 56, 701-707. https://doi.org/10.2136/sssaj1992.03615995005600 030005x
  • Brown, S., Wagner-Riddle, C., Debruyn, Z., Jordan, S., Berg, A., Ambadan, J. T., Congreves, K. A., & Machado, P. V. F. (2021). Assessing variability of soil water balance components measured at a new lysimeter facility dedicated to the study of soil ecosystem services. Journal of Hydrology, 603(Part C), 127037. https://doi.org/10.10167j.jhydrol.2021.127037
  • Burman, R. D., & Pochop, L. O. (1994). Evaporation, evapotranspiration and climate data. In Developments in atmospheric science, 22. Amsterdam. The Netherlands: Elsevier Science. Butler, A. P., Chen, J., Aguero, A., Edlund, O., Elert, M., Kirchner, G., Raskob, W., & Sheppard, M. (1999). Performance assessment studies of models for water flow and radionuclide transport in vegetated soils using lysimeter data. Journal of Environmental Radioactivity, 42(2-3), 271-288. https://doi.org/10.1016/S0265-931X(98)00059-9
  • Calder, I. R. (1976). The measurement of water losses from a forested area using a natural lysimeter. Journal of Hydrology, 30(4), 311-325. https://doi.org/10.1016/0022-1694(76)90115-3
  • Corwin, D. K., & LeMert, R. D. (1994). Construction and evaluation of an inexpensive weighing lysimeter for studying contaminant transport. Journal of Contaminant Hydrology, 15, 107-123. https://doi.org/10.1016/0169-7722(94)90013-2
  • Dabrowska, D., & Rykala, W. (2021). A review of lysimeter experiments carried out on municipal landfill waste. Toxics, 9, 26, https://doi.org/10.3390/toxics9020026
  • Dabrowska, D., Nowak, A., Soltysiak, M., Biniecka, P., Nourani, V., & Wasilkowski, D. (2022). In situ lysimeter experiment of leaching pollutants from municipal waste with physicochemical status and microbiome condition. Journal of Hydrology, 613, 128309. https://doi.org/10.1016/jjhydrol.2022.128309
  • Dagg, M. (1970). A study of the water use of tea in East Africa using a hydraulic lysimeter. Agricultural Meteorology, 7, 303-320. https://doi.org/10.1016/0002-1571(70)90025-7
  • Dietrich, O., & Steidl, J. (2021). Field calibrations of a Diviner 2000 capacitive soil water content probe on a shallow groundwater site and the application in a weighable groundwater lysimeter. Agricultural Water Management, 252, 106874. https://doi.org/10.1016/j.agwat.2021.106874
  • Dong, Y., & Hansen, H. (2023). Development and design of an affordable field scale weighing lysimeter using a microcontroller system. Smart Agricultural Technology, 4, 100147. https://doi.org/10.1016/j.atech.2022.100147
  • Eicosky, D. C., Sharratt, B. S., Ljungkull, J. E., & Baker, D. G. (1983). Comparison of alfalfa evapotranspiration measured by a weighing lysimeter and a portable chamber. Agricultural Meteorology, 28(3), 205-211. https://doi.org/10.1016/0002-1571(83)90026-2
  • Farrell, E. P., Nilsson, S. I., Wiklander, G., & Tamm, C. O. (1984). Distribution of sulphur fractions in lysimeters previously treated with sulphuric acid, NPK fertilizer and a combination of acid and fertilizer. Forest Ecology and Management, 8(1), 41-57. https://doi.org/10.1016/0378-1127(84)90084-7
  • Farrell, E. P., Wiklander, G., Nilsson, S. I., & Tamm, C. O. (1984). Distribution of nitrogen in lysimeters previously treated with sulphuric acid and a combination of acid and fertiliser. Forest Ecology and Management, 8(3-4), 265-279. https://doi.org/10.1016/0378-1127(84)90059-8
  • Gong, C., Zhang, Z., Wang, W., Duan, L., & Wang, Z. (2021). An assessment of different methods to determine specific yield for estimating groundwater recharge using lysimeters. Science of The Total Environment, Z88, 147799. https://doi.org/10.1016/j.scitotenv.2021.147799
  • Goyne, K. W., Day, R. L., & Chorover, J. (2000). Comments on Artifacts caused by collection of soil solution with passive capillary samples. Soil Science Society of American Journal, 64, 13301336. https://doi.org/10.2136/sssaj2001.6551571.ax
  • Green, A. E., Clothier, B. E., Kerr, J.,P., & Scotter, D. R. (1984). Evapotranspiration from pasture: A comparison of lysimeter and Bowen ration measurements with Priestley-Taylor estimates. New Zealand Journal of Agricultural Researcg, 2Z, 321-327. https://doi.org/10.1080/00288233.10430631
  • Grossule, V., & Lavagnolo, M. C. (2020). Lab tests on semi-aerobic landfilling of MSW under varying conditions of water availability and putrescible waste content. Journal of Environmental Management, 256, 109995. https://doi.org/10.1016/jjenvman.2019.109995
  • Guidi Nissim, W., Palm, E., Pandolfi, C., Mancuso, S., & Azzarello, E. (2021). Willow and poplar for the phyto-treatment of landfill leachate in Mediterranean climate. Journal of Environmental Management, 277, 111454. https://doi.org/10.1016/jjenvman.2020.111454
  • Hagenau, J., Meissner, R., & Borg, H. (2015). Effect of exposure on the water balance of two identical lysimeters. Journal of Hydrology, 520, 69-74. https://doi.org/10.1016/jjhydrol.2014.11.030
  • Hall, R. L. (1985). Further interception studies of heather using a wet-surface weighing lysimeter system. Journal of Hydrology, 81(1-2), 193-210. https://doi.org/10.1016/0022-1694(85)90176-3
  • Hashem, A. A., Engel, B. A., Bralts, V. F., Marek, G. W., Moorhead, J. E., Rashad, M., Radwan, S., & Gowda, P. H. (2020). Landsat hourly evpotranspiration flux assessment using lysimeters for the Texas high plains. Water, 12, 1192, https://doi.org/10.3390/w12041192
  • Herbrich, M., Gerke, H. H., Bens, O., & Sommer, M. (2017). Water balance and leaching of dissolved organic and inorganic carbon of eroded Luvisols using high precision weighing lysimeters. Soil Tillage and Research, 165, 144-160. https://doi.org/10.1016/j.still.2016.08.003
  • Holdsworth, P. M., & Roberts, G. (1982). A flow-proportional sampler for plot and lysimeter studies. Journal of Hydrology, 57(3-4), 389-393. https://doi.org/10.1016/0022-1694(82)90157-3
  • Hou, H., Yao, N., Li, J., Wei, Y., Zhao, L., Zhang, J., & Li, F. (2013). Migration and leaching risk of extaneous antimony in three representative soils of China: Lysimeter and batch experiments. Chemosphere, 93, 1980-1988. https://doi.org/10.10167j.chemosphere.2013.07.017
  • Howell, T. A., McCormick, R. L., & Phene, C. J. (1985). Design and installation of large weighing lysimeters. Transactions of the ASAE, 28(1), 106112. https://doi.org/10.13031/2013.32212
  • Howell, T. A., Schneider, A. D., & Jensen, M. E. (1991). History of lysimeter design and use for evapotraspiration measurements. In Lysimeter for Evapotranspiration and Environmental Measurements: Proc. ASCE Int. Symp. Lysimeter. 1991, 1-9.
  • Jalilzadeh, H., Hettiaratchi, J., Fleming, I., & Pokhrel, D. (2020). Effect of soil type and vegetation on the performance of evapotranspirative landfill biocovers- 1 field investigations and water balance modelling. Journal of Hazardous, Toxic & Radioactive Waste, 24, 535. https://doi.org/10.1061/(asce)hz.2153-55515.0000535
  • Jensen, M. E., Burman, R. D., & Allen, R. G. (1990). Evapotranspiration and irrigation water requirements. ASCE Manural No. 70. New York, N. Y.: ASCE.
  • Kandra, B., Tall, A., Gombos, M., & Pavelkova, D. (2023). Quantification of evapotranspiration by calculations and measurements using a lysimeter. Water, 15, 373. https://doi.org/10.3390/w15020373
  • Kohfahl, C., Molano-Leno, L., Martinez, G., Vanderlinden, K., Guardiola-Albert, C., & Moreno, L. (2019). Determining groundwater recharge and vapor flow in dune sediments using a weighable precision meteo lysimeter. Science of the Total Environment, 656, 550-557. https://doi.org/10.1016/j.scitotenv.2018.11.415
  • Li, W., Franssen, H.-J. H., Brunner, P., Li, Z., Wang, Z., Wang, Y., & Wang, W. 2022. The role of soil texture on diurnal and seasonal cycles of potential evaporation over saturated bare soils - Lysimeter studies. Journal of Hydrology, 613(Part A), 128194. https://doi.org/10.1016/jjhydrol.2022.128194
  • Liu, M., Paredes, P., Shi, H., Ramos, T. B., Dou, X., Dai, L., & Pereira, L. S. (2022). Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDua1Kc. Agricultural Water Management, 2Z3, 107887. https://doi.org/10.1016/j.agwat.2022.107887
  • Liu, M., Shi, H., Paredes, P., Ramos, T. B., Dai, L., Feng, Z., & Pereira, L. S. (2022). Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model. Agricultural Water Management, 261, 107362. https://doi.org/10.1016/j.agwat.2021.107362
  • Lopez-Urrea, R., Sanchez, J. M., Cruz, F. D. I., Gonzalez-Piqueras, J., & Chavez, J. L. (2020). Evapotranspiration and crop coefficients from lysimeter measurements for sprinkler-irrigate canola. Agricultural Water Management, 239, 106260. https://doi.org/10.1016/j.agwat.2020.106260
  • Lorite, I. J., Santos, C., Testi, L., & Fereres, E. (2012). Design and construction of a large weighing lysimeter in an almond orchard. Spanish Journal of Agricultural Research, 10(1), 238-250. https://doi.org/10.5424/sjar.2012101-243-11
  • Manley, A., Collins, A. L., Joynes, A., Mellander, P.-E., & Jordan, P. (2022). Coupled steroid and phosphorus leaching from cattle slurry at lysimeter scale. Journal of Contaminant Hydrology, 24Z, 103979. https://doi.org/10.1016/j.jconhyd.2022.103979
  • Martin, E. C., de Oliveira, A. S., Folta, A. D., Pegelow, E. J., & Slack, D. C. (2001). Development and testing of a small weighable lysimeter system to assess water use by shallow-rooted crops. Transactions of the ASAE, 44(1), 71-78. https://doi.org/10.13031.2013.2309
  • McCauely, D. M., & Nackley, L. L. (2022). Development of mini-lysimeter system for use in irrigation automation of container-grown crops. HardwareX, 11, e00298. https://doi.org/10.1016/j.ohx.2022.e00298
  • McFarland, M. J., Worthington, J. W., & Newman, J. S. (1983). Design, installation and operation of twin weighing lysimeters for fruit tress. Transacton of the ASAE, 26(6), 1717-1721. https://doi.org/10.13031/201333831
  • Meijer, J., Bot, G. P. A., Stanghellini, C., & Cate, A. J. U. T. (1985). Development and application of a sensitive, high precision weighing lysimeter for use in greenhouse. Journal of Agricultural Engineering Research, 32(4), 321-336. https://doi.org/10.1016/0021-8634(85)90097-6
  • Misra, R. K., Padhi, J., & Payero, J. O. (2011). A calibration procedure for load cells to improve accuracy of mini-lysimeters in monitoring evpotranspiration. Journal of Hydrology, 406(1-2), 113-118. https://doi.org/10.1016/j.jhydrol.2011.06.009
  • Montoro, A., Torija, I., Manas, F., & Lopez-Urrea, R. (2020). Lysimeter measurements of nocturnal and diurnal grapevine transpiration: Effect of soil water content, and phenology. Agricultural Water Management, 229, 105882. https://doi.org/10.1016/j.agwat.2019.105882
  • Morvan, T., Lemoine, C., Gaillard, F., Hamelin, G., Trinkler, B., Carteaux, L., Petitjean, P., & Jaffrezic, A. (2020). A comprehensive dataset on nitrate, Nitrate and dissolved organic carbon leaching losses from a 4-year Lysimeter study. Data Brief, 32, 106029. https://doi.org/10.1016/j.dib.2020.106029
  • Mugah, J. O., & Stewart, J. I. (1986). A note on the effect of fallowing on water storage and loss as determined from a lysimeter for a tropical clay soil. Agricultural and Forest Meterology, 38(1-3), 243247. https://doi.org/10.1016/0168-1923(86)90062-6
  • Muniruzzaman, M., Karlsson, T., Ahmadi, N., Kauppila, P. M., Kauppila, T., & Rolle, M. (2021). Weathering of unsaturated waste rocks from Kevitsa and Hitura mines: Pilot-scale lysimeter experiments and reactive transport modeling. Applied Geochemistry, 130, 104984. https://doi.org/10.1016/j.apgeochem.2021.104984
  • Nicolas-Cuevas, J. A., Parras-Burgos, D., SolerMendez, M., Ruiz-Canales, A., & Molina-Martinez, M. (2020). Removable weighing lysimeter for use in horticultural crops. Applied Sciences, 10, 4865. https://doi.org/10.3390/app10144865
  • Phogat, V., Skewes, M. A., Cox, J. W., Alam, J., Grigson, G., & Simunek, J. (2013). Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree. Agricultural Water Management, 127, 74-84. https://doi.org/10.1016/j.agwat.2013.05.017
  • Ramos, T. B., Liu, M., Paredes, P., Shi, H., Feng, Z., Lei, H., & Pereira, L. S. (2023). Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation. Agricultural Water Management, 283, 108306. https://doi.org/10.1016/j.agwat.2023.108306
  • Ramsbeck, M., Franko, U., & Steinhardt, U. (1997). Modeling of lysimeter data using the simulation model candy to interpret water and nitrogen flow. First European Conference for Information Technology in Agriculture, Copenhagen. 15-18 June; 1997.
  • Ruiter, J. H. (1987). Growth, crop conductance and prediction of stem volume increment of irrigated and non-irrigated young radiata pine in non-weighing lysimeters. Forest Ecology and Management, 20(1-2), 79-96. https://doi.org/10.1016/0378-1127(87)90151-4
  • Sammis, T. W. (1981). Lysimeter for measuring aridzone evapotranspiration. Journal of Hydrology, 49(3-4), 385-394. https://doi.org/10.1016/S0022-1694(81)80021-2
  • Santikari, V. P., Witmer, M., Murdoch, L. C., Kaplan, D. I., & Powdell, B. A. (2022). Leaching and transport of technetium from reducing cementitious waste forms in field lysimeters. Science of the Total Environment, 841, 156596. https://doi.org/10.1016/j.scitotenv.2022.156596
  • Sargar, A., Hasan, M., Singh, D. K., Al-Ansari, N., Chakraborty, D., Singh, M. C., Iquebal, M. A., Kumar, A., Malkani, P., Vishwakarma, D. K., & Elbeltagi, A. (2022). Development of smart weighing lysimeter for measuring evapotranspiration and developing crop coefficient for greenhouse Chrysanthemum. Sensors, 22, 6239. https://doi.org/10.3390/s22166239
  • Schneider, A. D., Howell, T. A., Moustafa, A. T. A., Evett, S. R., & Zbou-Zeid, W. (1998). A simplified weighing lysimeter for monolithic or reconstructed soils. Applied Engineering in Agriculture, 14(3), 267-273. https://doi.org/10.13031/2013.19388
  • Schrader, F., Durner, W., Fank, J., Gebler, S., Putz, T., Hannes, M., & Wollschlager, U. (2013). Estimating precipitation and actual evapotranspiration from precision lysimeter measurements. Procedia Environmental Sciences, 19, 543-552. https://doi.org/10.1016/j.proenv.2013.06.061
  • Scott, H. D. (1974). Use of a laboratory lysimeter to determine soil moisture transport properties. Journal of Agricultural Education, 4(4), 28-32. https://doi.org/10.2134/jae.1975.0028
  • Seuntjens, P., Mallants, D., Toride, N., Cornelis, C., & Geuzens, P. (2001). Grid lysimeter study of steady state chloride transport in two Spodosol types using TDR and wick samplers. Journal of Contaminant Hydrology, 51(2), 13-39. https://doi.org/10.1016/S0169-7722(01)00120-6
  • Shahrajabian, M. H., & Soleymani, A. (2017). A lysimeter study, a unique tool for botanists, agronomists and other plant scientists. Asian Research Journal of Agriculture, 4(2), 1-9.
  • Shahrajabian, M. H., Soleymani, A., Ogbaji, P. O., & Xue, X. (2017). Survey on qualitative and quantitative traits of winter wheat under different irrigation treatments using weighing lysimeter in North China Plain. International Journal of Plant & Soil Science, 15(4), 1-11.
  • Shahrajabian, M. H., Soleymani, A., Ogbaji, P. O., & Xue, X. (2017). Evaluation of crop coefficient, cumulative and dynamic evapo-transpiration of winter wheat under deficit irrigation treatments in weighing lysimeter in Beijing, China. Applied Science & Innovative Research, 1(1), 38-62.
  • Shahrajabian, M. H., & Sun, W. (2022). Medicinal plants, economical and natural agents with antioxidant activity. Current Nutrition & Food Science, 19(8), 763-784. https://doi.org/10.2174/1573401318666221003110 058
  • Shahrajabian, M. H., & Sun, W. (2023). Five important seeds in traditional medicine, and pharmacological benefits. Seeds, 2(3), 290-308. https://doi.org/10.3390/seeds2030022
  • Shahrajabian, M. H., & Sun, W. (2023). The golden spice for life: Turmeric with the pharmacological benefits of curcuminoids components, including curcumin, bisdemethoxycurcumin, and demethoxycurcumin. Current Organic Synthesis, 20. https://doi.org/10.2174/1570179420666230607124 949
  • Shahrajabian, M. H., & Sun, W. (2023). Various techniques for molecular and rapid detection of infectious and epidemic diseases. Letters in Organic Chemistry, 20, 1-23. https://doi.org/10.2174/1570178620666230331095 720
  • Shahrajabian, M. H., & Sun, W. (2023). The importance of salicylic acid, humic acid and fulvic acid on crop production. Letters in Drug Design & Discovery, 2023(20), 1-16. https://doi.org/10.2174/1570180820666230411102 209
  • Shahrajabian, M. H., & Sun, W. (2023). Great health benefits of essential oils of pennyroyal (Mentha pulegium L.): A natural and organic medicine. Current Nutrition & Food Science, 19(4), 340-345. https://doi.org/10.2174/1573401318666220620145 213
  • Shahrajabian, M. H., & Sun, W. (2023). The important nutritional benefits and wonderful health benefits of cashew (Anacardium occidentale L.). The Natural Products Journal, 13(4), 2-10. https://doi.org/10.2174/2210315512666220427113 702
  • Shahrajabian, M. H., & Sun, W. (2023). Potential roles of longan as a natural remedy with tremendous nutraceutical values. Current Nutrition & Food Science, 19(9), 888-895. https://doi.org/10.2174/1573401319666230221111 242
  • Shahrajabian, M. H., & Sun, W. (2023). A friendly strategy for an organic life by considering Syrian bean caper (Zygophyllum fabago L.), and parsnip (Pastinaca sativa L.). Current Nutrition & Food Science, 9(9), 1-5. https://doi.org/10.2174/1573401131966623020709 3757
  • Shahrajabian, M. H., & Sun, W. (2023). Importance of thymoquinone, sulforaphane, phloretin, and epigallocatechin and their health benefits. Letters in Drug Design & Discovery, 19. https://doi.org/10.2174/1570180819666220902115 521
  • Shahrajabian, M. H., & Sun, W. (2023). Survey on medicinal plants and herbs in traditional Iranian medicine with anti-oxidant, anti-viral, anti-microbial, and anti-inflammation properties. Letters in Drug Design & Discovery, 19. https://doi.org/10.2174/1570180819666220816115 506
  • Shu, W., Price, G. W., Jamieson, R., & Lake, C. (2023). Effect of biosolids amendment on the fate and mobility of non-steroidal anti-inflammatory drugs (NSAIDs) in a field-based lysimeter cell study. Environmental Pollution, 331(Part 1), 121939. https://doi.org/10.1016/j.envpol.2023.121939
  • Silver, M., & Ritcey, G. M. (1985). Effects of iron-oxidizing bacteria and vegetation on acid generation in laboratory lysimeter tests on pyrite-containing uranium tailings. Hydrometallurgy, 15(2), 255-264. https://doi.org/10.1016/0304-386X(85)90058-1
  • Silver, M., Ritcey, G. M., & Cauley, M. P. (1985). A lysimeter comparison of the effects of uranium tailings deposition methods on the release of environmental contaminants. Hydrometallurgy, 15(2), 159-172. https://doi.org/10.1016/0304-386X(85)90051-9
  • Slezak, R., Krzystek, L., & Ledakowicz, S. (2015). Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions. Waste Management, 43, 293-299. https://doi.Org/10.1016/j.wasman.2015.06.017
  • Soler-Mendez, M., Parras-Burgos, D., Mas-Espinosa, E., Ruiz-Canales, A., Intrigliolo, D. S., & Molina-Martinez, J. M. (2021). Standardization of dimension of a portable weighing lysimeter designed to be applied to vegetable crops in Mediterranean climates. Sustainability, 13, 2210. https://doi.org/10.3390/su13042210
  • Summer, D., Schoftner, P., Wimmer, B., Pastar, M., Kostic, T., Sessitsch, A., Gerzabek, M. H., & Reichenauer, T. G. (2020). Synergistic effects of microbial anaerobic dechlorination of perchloroethene and nano zero-valent iorn (nZVI) -A lysimeter experiment. New Biotechnology, 57, 34-44. https://doi.org/10.1016/j.nbt.2020.02.005
  • Sun, W., Shahrajabian, M. H., & Lin, M. (2022). Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation, 8(12), 688. https://doi.org/10.3390/fermentation8120688
  • Sun, W., & Shahrajabian, M. H. (2023). Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules, 28(1845), 1-47. https://doi.org/10.3390/molecules28041845
  • Takahashi, J., Hihara, D., Sasaki, T., & Onda, Y. (2022). Evaluation of contribution rate of the infiltrated water collected using zero-tension lysimeter to the downward migration of 137Cs derived from the FDNPP accident in a cedar forest soil. Science of The Total Environment, 816, 151983. https://doi.org/10.1016/j.scitotenv.2021.151983
  • Tamimi, M. A., Green, S., Hammami, Z., Ammar, K., Ketbi, M. A., Al-Shrouf, A. M., Dawoud, M., Kennedy, L., & Clothier, B. (2022). Evapotranspiration and crop coefficients using lysimeter measurements for food crops in the hyper-arid United Arab Emirates. Agricultural Water Management, 272, 107826. https://doi.org/10.1016/j.agwat.2022.107826
  • Thevenot, M., Dousset, S., Rousseaux, S., & Andreuz, F. (2008). Influence of organic amendments on diuron leaching through an acidic and a clacareous vineyard soil using undistrubed lysimeters. Environmental Pollution, 153(1), 148-156. https://doi.org/10.1016/j.envpol.2007.07.020
  • Top, S., Akkaya, S., Demir, A., Yildiz, S., Balahorli, V., S Bilgili, M. (2019). Investigation of leachate characteristics in field-scale landfill test cells. International Journal of Environmental Research, 13, 829-842. https://doi.org/10.1007/s41742-019-00217-5
  • Trajkovic, S. (2010). Testing hourly reference evapotranspiration approaches using lysimeter measurements in a semiarid climate. Hydrology Research, 41(1), 38-49. https://doi.org/10.2166/ng.2010.015
  • Tremosa, J., Debure, M., Narayanasamy, S., Redon, P.O., Jacques, D., Claret, F., S Robinet, J.-C. (2020). Shale weathering: A lysimeter and modelling study for flow, transport, gas diffusion and reactivity assessment in the critical zone. Journal of Hydrology, 587, 124925. https://doi.org/10.1016/j.jhydrol.2020.124925
  • Unlu, M., Kanber, R., S Kapur, B. (2010). Comparison of soybean evapotranspirations measured by weighing lysimeter and Bowen ratio-energy balance methods. African Journal of Biotechnology, 9(30), 4700-4713.
  • Valtanen, M., Sillanpaa, N., S Setala, H. (2017). A large-scale lysimeter study of stormwater biofiltration under cold climatic conditions. Ecological Engineering, 100, 89-98. https://doi.org/10.1016/j.ecoleng.2016.12.018
  • Virtanen, S., Simojoki, A., Knuutila, O., S Yli-Halla, M. (2013). Monolithic lysimeters as tools to investigate processes in acid sulphate soil. Agricultural Water Management, 127, 48-58.https://doi.org/10.1016/j.agwat.2013.05.013
  • Voisey, P. W., S Hobbs, E. H. (1972). A weighing system for lysimeter. Canadian Agricultural Engineering, 14(2), 82-84.
  • Von Unold, G., S Fank, J. (2008) Moduclar design of field lysimeter for specific application needs. Water Air & Soil Pollution, 8, 233-242. https://doi.org/10.1007/s11267-0079172-4
  • Waggoner, P. E., & Turner, N. C. (1972). Comparison of simulated and actual evporation from maize and soil in a lysimeter. Agricultural Meteorology, 10, 113-123. https://doi.org/10.1016/0002-1571(72)90012-x
  • Wherley, B., Sinclair, T., Dukes, M., & Miller, G. (2009). Design, construction, and field evaluation of a lysimeter system for determining turfgrass water use. Proceedings of the Florida State Horticultural Society, 122, 373-377.
  • Widmoser, P., & Wohlfahrt, G. (2018). Attributing the energy imbalance by concurrent lysimeter and eddy covariance evpotranspiration measurements. Agricultural and Forest Meteorology, 263, 287-291. https://doi.org/10.1016/j.agrformet.2018.09.003
  • Xu, C. Y., & Chen, D. (2005). Comparison of seven models for estimating of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrological Processes, 19, 3717-3734. https://doi.org/10.1002/hyp.5853
  • Xu, Q., Qin, J., & Ko, J. (2019). Municipal solid waste landfill performance with different biogas collection practives: Biogas and leachate generations. Journal of Cleaner Production, 222, 446-454. https://doi.org/10.1016.jjclepro.2019.03.083
  • Young, M. H., Wierenga, P. J., & Mancino, C.F. (1996). Large weighing lysimeters for water use and deep percolation studies. Soil Science, 161, 491-501. https://doi.org/10.1097/00010694-199608000-00004
  • Zhang, W., Yang, M., Zhang, S., Yu, L., Zhao, F., Chen, D., Yang, S., Li, H., Zhang, S., Li, R., & Zhang, J. (2023). Applicability assessment of five evapotranspiration models based on lysimeter data from a bioretention system. Ecological Engineering, 194, 107049. https://doi.org/10.1016/j.ecoleng.2023.107049
  • Zupanc, V., Bracic-Zelenik, B., & Pintar, M. (2005). Water balance assessment for lysimeter station based on water pumping station Klece in Ljubljana. Acta Agriculturae Slovenica, 85, 83-90.
Еще
Статья обзорная