A Rigorous Euclidean Geometric Proof of the Cube Duplication Impossibility
Автор: Alex Mwololo Kimuya
Журнал: International Journal of Mathematical Sciences and Computing @ijmsc
Статья в выпуске: 1 vol.10, 2024 года.
Бесплатный доступ
This paper introduces a rigorous impossibility proof in Euclidean geometry, presenting a scrupulous demonstration of the unattainability of doubling the volume of a cube through any given procedure. The proof methodically follows the rigorous principles of classical geometry, offering clarity and insight into a longstanding mathematical challenge. The paper further emphasizes the historical misconceptions and varied solutions that have emerged due to the lack of a definitive Euclidean geometric proof. It highlights the enduring strengths, independence, and richness of Euclidean geometry while dispelling the notion that algebraic methods are the exclusive avenue to tackle geometric impossibilities. The results obtained throughout this proof solidify the position of Euclidean geometry as a potent and illuminating tool, reaffirming its pivotal role in the world of mathematics. This work contributes not only to the resolution of a specific mathematical challenge but also to the broader understanding of the unique virtues and capabilities of Euclidean geometry in tackling complex geometric problems.
Euclidean geometry, Cube duplication, Impossibility proof, Geometric construction, Euclid’s Elements, Algebraic methods, Visual intuition, Classical geometry
Короткий адрес: https://sciup.org/15019071
IDR: 15019071 | DOI: 10.5815/ijmsc.2024.01.02
Список литературы A Rigorous Euclidean Geometric Proof of the Cube Duplication Impossibility
- D. Crippa, “IMPOSSIBILITY RESULTS: FROM GEOMETRY TO ANALYSIS,” phdthesis, Univeristé Paris Diderot Paris 7, 2014. Accessed: Sep. 05, 2020. [Online]. Available: https://hal.archives-ouvertes.fr/tel-01098493.
- V. Blåsjö, “Operationalism: An Interpretation of the Philosophy of Ancient Greek Geometry,” Found. Sci., vol. 27, no. 2, pp. 587–708, Jun. 2022, doi: 10.1007/s10699-021-09791-4.
- A. Grozdanić and G. Vojvodić, “On the ancient problem of duplication of a cube in high school teaching,” Teach. Math., vol. 13, no. 1, pp. 51–61, 2010, Accessed: Oct. 24, 2023. [Online]. Available: https://scindeks.ceon.rs/article.aspx?artid=1451-49661001051G.
- K. M. A. Mutembei Josephine, “The Cube Duplication Solution (A Compassstraightedge(Ruler) Construction),” Int. J. Math. Trends Technol. IJMTT, Accessed: Oct. 23, 2023. [Online]. Available: https://ijmttjournal.org/archive/ijmtt-v50p549.
- K. Saito, “Doubling the cube: A new interpretation of its significance for early greek geometry,” Hist. Math., vol. 22, no. 2, pp. 119–137, May 1995, doi: 10.1006/hmat.1995.1013.
- M. Ben-Ari, “Geometric Constructions Using Origami,” in Mathematical Surprises, M. Ben-Ari, Ed., Cham: Springer International Publishing, 2022, pp. 141–150. doi: 10.1007/978-3-031-13566-8_12.
- H. Güler and M. Gürbüz, “Construction Process of the Length of 3√2 by Paper Folding,” Int. J. Res. Educ. Sci., pp. 121–135, Jan. 2018, doi: 10.21890/ijres.382940.
- I. E. Rabinovitch, “Non-Euclidean Geometry,” Science, vol. 24, no. 614, pp. 440–441, Oct. 1906, doi: 10.1126/science.24.614.440.
- T. D. Son, “Exact Doubling the Cube with Straightedge and Compass by Euclidean Geometry,” Int. J. Math. Trends Technol. IJMTT, Accessed: Oct. 23, 2023. [Online]. Available: https://ijmttjournal.org/archive/ijmtt-v69i8p506.
- J. Lützen, “The Algebra of Geometric Impossibility: Descartes and Montucla on the Impossibility of the Duplication of the Cube and the Trisection of the Angle,” Centaurus, vol. 52, no. 1, pp. 4–37, 2010, doi: 10.1111/j.1600-0498.2009.00160.x.
- Pierre Laurent Wantzel, Recherches sur les Moyens de Reconnaitre si un Problème de Géométrie Peut se Résoudre Avec la Règle et le Compass, Journal de Mathematiques Pures et Appliques, 2, (1837) 366–372.
- M. Panza, “Rethinking geometrical exactness,” Hist. Math., vol. 38, no. 1, pp. 42–95, 2011.
- P. Milici, “A QUEST FOR EXACTNESS : machines, algebra and geometry for tractional constructions of differential equations,” 2015.
- F. Borceux, An Axiomatic Approach to Geometry: Geometric Trilogy I. Cham: Springer International Publishing, 2014. doi: 10.1007/978-3-319-01730-3.
- J. Stillwell, Mathematics and Its History: A Concise Edition. in Undergraduate Texts in Mathematics. Cham: Springer International Publishing, 2020. doi: 10.1007/978-3-030-55193-3.
- R. J. Trudeau, “Euclidean Geometry,” in The Non-Euclidean Revolution, Boston, MA: Birkhäuser Boston, 2001, pp. 22–105. doi: 10.1007/978-1-4612-2102-9_2.
- F. Borceux, “Euclid’s Elements,” in An Axiomatic Approach to Geometry, Cham: Springer International Publishing, 2014, pp. 43–110. doi: 10.1007/978-3-319-01730-3_3.
- I. E. Rabinovitch, “Non-Euclidean Geometry,” Science, vol. 24, no. 614, pp. 440–441, Oct. 1906, doi: 10.1126/science.24.614.440.