Abiotic stress-induced changes in antioxidative system and secondary metabolites production in Andrographis paniculata

Автор: Mourya Suraj Kumar, Mohil Praveen, Kumar Anil

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.18, 2022 года.

Бесплатный доступ

Andrographis paniculata is an annual herbaceous plant of the family Acanthaceae. Andrographolide (a bicycle diterpene) is the main component of A. paniculata and responsible for its bitter taste. Abiotic stress considerably affects the life cycle of plants through morphological, biochemical, and physiological changes. These stresses also act as elicitors for the synthesis of secondary metabolites (SMs) in plants. Secondary metabolites help plants to survive in adverse conditions via alleviating osmotic stress and reducing Reactive Oxygen Species (ROS). In this review, we discuss the response of the antioxidative system and biosynthesis of secondary metabolites in A. paniculata under abiotic stress. The mechanism involve in biosynthesis of ent-labdane diterpenoids is also discussed.

Еще

Environmental stress, elicitors, andrographolide, reactive oxygen species, antioxidants

Короткий адрес: https://sciup.org/143179059

IDR: 143179059

Список литературы Abiotic stress-induced changes in antioxidative system and secondary metabolites production in Andrographis paniculata

  • Agostini-Costa T.D.S., Vieira R.F., Bizzo H.R., Silveira D. and Gimenes M.A. (2012) Secondary Metabolites, Chromatography and Its Applications. IntechOpen, London, UK, 131-132.
  • Akbar S. (2011) Andrographis paniculata: a review of pharmacological activities and clinical effects. Altern. Med. Rev., 16(1), 66-77.
  • Akula R. and Ravishankar G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav., 6(11), 1720-1731.
  • Antony A. and Nagella P. (2021) Heavy metal stress influence the andrographolide content, phytochemicals and antioxidant activity of Andrographis paniculata. Plant Sci. Today, 8(2), 324-330.
  • Anuradha V.E., Jaleel C.A., Salem M.A., Gomathinayagam M. and Panneerselvam R. (2010) Plant growth regulators induced changes in antioxidant potential and andrographolide content in Andrographis paniculata Wall. ex Nees. Pestic Biochem. Physiol., 98(2), 312-316.
  • Arora A., Sairam R.K. and Srivastava G.C. (2002) Oxidative stress and antioxidative system in plants. Curr. Sci., 82(10), 1227-1238. Asada K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. plant boil., 50(1), 601639.
  • Barton K.E. (2007) Early ontogenetic patterns in chemical defense in Plantago (Plantaginaceae): genetic variation and trade-offs. Am. J. Bot., 94(1), 56-66.
  • Chandran N.A. and Pillai P.U. (2018) In vitro studies on the effect of sodium azide treatment on secondary metabolites production in Andrographis paniculata (Burm. F.) Nees. J. Pharmacogn. Phytochem., 7, 2411-2415.
  • Chang H.M. and But P.P.H. (1987) Pharmacology and application of Chinese material medica. World Scientific, Singapore, 1, 918-928.
  • Chen X., Xie Y., Wei K., Lan Z., Li C., Li Y. and Guo X. (2020) Drought stress enhanced andrographolides contents in Andrographis paniculata. Acta Ecol. Sin., 40(2), 113- 121.
  • Paul S. (2012) Pharmacological potentials of Andrographis paniculata: an overview. Int. J. Pharmacol., 8(1), 6-9.
  • Das D. and Bandyopadhay M. (2020) Novel approaches towards overproduction of andrographolide in in-vitro seedling cultures of Andrographis paniculata. S. Afr. J. Bot., 128, 77-86.
  • Das P., Khare P., Singh R.P., Yadav V., Tripathi P., Kumar A., Pandey V., Gaur P., Singh A., Das R. and Hiremath C. (2021) Arsenic-induced differential expression of oxidative stress and secondary metabolite content in two genotypes of Andrographis paniculata. J. Hazard. Mater., 406, 124302.
  • Dawande A.A. and Sahay S. (2020) Copper sulphate elicitation of optimized suspension culture of Andrographis paniculata Nees yields unprecedented level of andrographolide. J. Microbiol. Biotechnol. Food Sci., 9(4), 688-694.
  • Demidchik V. (2014) Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot., 109, 212-228.
  • Kai G. (2020) SmMYB2 promotes salvianolic acid biosynthesis in the medicinal herb Salvia miltiorrhiza. J. Integr. Plant Biol., 62(11), 1688-1702.
  • Djanaguiraman M., Perumal R., Jagadish S.V.K., Ciampitti I.A., Welti R. and Prasad P.V.V. (2018) Sensitivity of sorghum pollen and pistil to high-temperature stress. Plant Cell Environ., 41(5), 1065-1082.
  • Fang X., Yang C.Q., Wei Y.K., Ma Q.X., Yang L. and Chen X.Y. (2011) Genomics grand for diversified plant secondary metabolites. Plant Divers., 33(1), 53-64.
  • Gandi S., Rao K., Chodisetti B. and Giri A. (2012) Elicitation of andrographolide in the suspension cultures of Andrographis paniculata. Appl. Biochem. Biotechnol., 168, 1729-1738.
  • Garg A., Agrawal L., Misra R.C., Sharma S. and Ghosh S. (2015) Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes. BMC Genom., 16(1), 1-16.
  • George M. and Pandalai K.M. (1949) Investigations on plant antibiotics, Part IV. Further search for antibiotics substances in Indian medicinal plants. Indian J. Med. Res., 37, 169-181.
  • Gouvea D.R., Gobbo-Neto L., Sakamoto H.T., Lopes N.P., Lopes J.L.C., Meloni F. and Amaral J.G. (2012) Seasonal variation of the major secondary metabolites present in the extract of Eremanthus mattogrossensis Less (Asteraceae: Vernonieae) leaves. Quim. Nova, 35(11), 2139-2145.
  • Gudhate P.P., Lokhande D.P. and Dhumal K.N. (2009) Role of plant growth regulators for improving andrographolide in Andrographis paniculata. Pharmacogn. Mag., 5(19), 249.
  • Gull A., Lone A.A. and Wani, N.U.I. (2019) Biotic and abiotic stresses in plants. Abiotic and biotic stress in plants, Intechopen, London, UK, 1-19.
  • Hao X., Pu Z., Cao G., You D., Zhou Y., Deng C., Shi M., Nile S.H., Wang Y., Zhou W. and Kai G. (2020) Tanshinone and salvianolic acid biosynthesis are regulated by SmMYB98 in Salvia miltiorrhiza hairy roots. J. Adv. Res., 23, 1-12.
  • Hartmann T. (2007) From waste products to ecochemicals: Fifty years research of plant secondary metabolism. Phytochem., 68, 28312846.
  • Ho T.T., Murthy H.N. and Park S.Y. (2020) Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell Chowdhury A., Biswas S.K., Raihan S.Z., Das J., and Deng C., Wang Y., Huang F., Lu S., Zhao L., Ma X. and and organ cultures. Int. J. Mol. Sci., 21(3), 716.
  • Huang D., Ou B. and Prior R.L. (2005) The chemistry behind antioxidant capacity assays. J. Agric. Food Chem., 53(6), 1841-1856.
  • Hussain M., Farooq M. and Ashraf M.Y. (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J. Agron. Crop Sci., 194(3), 193-199.
  • Hussein R.A. and El-Anssary A.A. (2019) Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. J. Herb. Med., 1, 13.
  • Ismail N.A., Hossain M.S., Mustafa N.H.M. and Phang C. (2015) Morpho-physiological characteristics, selected macronutrient uptake, and oxidative stress level of Andrographis paniculata under saline condition. J. Teknol., 77(24), 135-140.
  • Jamwal K., Bhattacharya S. and Puri S. (2018) Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J. Appl. Res. Med. Aromat. Plants, 9, 26-38.
  • Jan R., Asaf S., Numan M. and Kim K.M. (2021) Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agron., 11(5), 968.
  • Jian S.F., Huang X.J., Yang X.N., Zhong C. and Miao J.H. (2021) Sulfur regulates the trade-off between growth and andrographolide accumulation via nitrogen metabolism in Andrographis paniculata. Front. Plant Sci., 12.
  • Joseph S.M. (2014) Scientific aspects of the therapeutic use of A. paniculata (kalmegh): A review. Int. J. Pharm. Sci. Rev. Res., 27(1), 10-13.
  • Kaya M.D., Okcu G., Atak M., Cikili Y. and Kolsarici O. (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur. J. Agron., 24(4), 291295.
  • Kranner I., Minibayeva F.V., Beckett R.P. and Seal C.E. (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol., 188(3), 655-673.
  • Kumar A. (2020) Inorganic Soil Contaminants and Their Biological Remediation. In Plant Responses to Soil Pollution. Springer, Singapore, 133-153.
  • Kumar A. and Aery N.C. (2011) Effect of tungsten on growth, biochemical constituents, molybdenum and tungsten contents in wheat. Plant Soil Environ., 57(11), 519-525.
  • Kumar A. and Aery N.C. (2012) Effect of tungsten on the growth, dry-matter production, and biochemical constituents of cowpea. Commun. Soil Sci. Plant Anal., 43(7),1098-1107.
  • Kumar A. and Aery N.C. (2016) Impact, metabolism, and toxicity of heavy metals in plants. In Plant responses to xenobiotics. Springer, Singapore. 141-176.
  • Kumar A., Rodrigues V., Verma S., Singh M., Hiremath C., Shanker K., Shukla A. and Sundaresan V. (2021) Effect of salt stress on seed germination, morphology, biochemical parameters, genomic template stability, and bioactive constituents of Andrographis paniculata Nees. Acta Physiol. Plant., 43(4), 1-14.
  • Kumar R.N., Chakraborty S. and Kumar N. (2012) Influence of light and developmental stages on active principles of Andrographis paniculata (Burm.f.) Wall. ex Nees. Indian J. Sci., 3(1), 91-95.
  • Kumar R.N., Chakraborty S. and Kumar N. (2009) Effect of light stress on peroxidase, succinate dehydrogenease and total chlorophyll content in Andrographis paniculata. Asian J. Environ. Sci., 4(1), 34-38.
  • Kurepin L.V., Ivanov A.G., Zaman M., Pharis R.P., Hurry V. and Huner N.P. (2017) Interaction of glycine betaine and plant hormones: protection of the photosynthetic apparatus during abiotic stress. In Photosynthesis: Structures, mechanisms, and applications. Springer, Cham. New York, USA, 185202.
  • Lange B.M., Ketchum R.E. and Croteau R.B. (2001) Isoprenoid biosynthesis. Metabolite profiling of peppermint oil gland secretory cells and application to herbicide target analysis. J. Plant Physiol., 127(1), 305-314.
  • Lisar S.Y., Rahman I.M., Hossain M.M. and Motafakkerazad R. (2012) Water Stress in Plants: Causes, Effects and Responses. IntechOpen, London, UK.
  • Mahajan S. and Tuteja N. (2005) Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys., 444(2), 139-158.
  • Matsuda T., Kuroyanagi M., Sugiyama S., Umehara K., Ueno A. and Nishi K. (1994) Cell differentiation-inducing diterpenes from Andrographis paniculata Nees. Chem. Pharm. Bull., 42, 1216-1225.
  • Plant review Andrographis paniculata (Kalmegh): A review. Pharmacogn. Rev., 1(2), 283-298.
  • Mittler R. (2006) Abiotic stress, the field environment and stress combination. Trends Plants Sci., 11(1), 15-19.
  • Morison J.I.L. and Lawlor D.W. (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ., 22(6), 659-682.
  • Niranjan A., Tewari S. and Lehri A. (2010) Biological activity of kalmegh (Andrographis paniculata Nees) and its active principles- A review. Indian J. Nat. Prod. Resour., 1(2), 125-135.
  • Noctor G. and Foyer C.H. (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Boil., 49(1), 249-279.
  • Nonami H. (1998) Plant water relations and control of cell elongation at low water potentials. J. Plant Res., 111(3), 373-382.
  • Patil R. and Jain V. (2021) Andrographolide: A review of analytical methods. J. Chromatogr. Sci., 59(2), 191203.
  • Phukan U.J., Jeena G.S. and Shukla R.K. (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front. Plant Sci., 7, 760.
  • Prajapati N.D., Purohit S.S., Sharma A.K. and Kumar T. (2003) A handbook of medicinal plants. Agrobios, Jodhpur (India).
  • Purwanto E., Samanhudi S. and Sudarmi S. (2012) Studies of shading levels and nutrition sources on growth, yield and andrographolide content of Sambiloto (Andrographis paniculata Ness). AGRIVITA, J. Agric. Sci., 33(3), 300-306.
  • Rafi M., Devi A.F., Syafitri U.D., Heryanto R., Supart I.H., Amran M.B., Rohman A., Prajogo B. and Lim L.W. (2020) Classification of Andrographis paniculata extracts by solvent extraction using HPLC fingerprint and chemometric analysis. BMC Res. Notes, 13(1), 1-6.
  • Sandborn W.J., Targan S.R., Byers V.S., Rutty D.A., Mu H., Zhang X. and Tang T. (2013) Andrographis paniculata extract (HMPL-004) for active ulcerative colitis. Am. J. Gastroenterol., 108(1), 90.
  • Saravanan R., Khristi S., Gajbhiye N.A. and Maiti S. (2009) Effect of plant population and soil moisture stress on herbage yield and andrographolide content in Andrographis paniculata. Indian J. Hortic., 66(1), 120-125.
  • Sareer O., Ahmad S. and Umar S. (2014) Andrographis paniculata: a critical appraisal of extraction, isolation and quantification of andrographolide and other active constituents. Nat. Prod. Res., 28, 2081-2101.
  • Shao Y.H., Gao J.L., Wu X.W., Li Q., Wang J.G., Ding P. and Lai X.P. (2015) Effect of salt treatment on growth, isoenzymes and metabolites of Andrographis paniculata (Burm. f.) Nees. Acta Physiol. Plant., 37(2), 1-12.
  • Sharma B.K. and Jain A.K. (2015) Studies on Some Aspects of Reproductive biology of Andrographis paniculata (Acanthaceae). Int. J. Plant Reprod. Biol., 7(2), 153-158.
  • Sharma S., Sharma Y.P. and Bhardwaj C. (2018) HPLC quantification of andro-grapholide in different parts of A. paniculata (Burm.F.) wall. Ex Nees. J. Pharmacogn. Phytochem., 7(3), 168-171.
  • Siripong P., Kongkathip B., Preechanukool K., Picha P., Tunsuwan K. and Taylor W.C. (1992). Cytotoxic diterpenoid constituents from Andrographis paniculata, Nees leaves. J. Sci.Soc. Thail., 18(4), 187-194.
  • Song Y.X., Liu S.P., Jin Z., Qin J.F. and Jiang Z.Y. (2013) Qualitative and quantitative analysis of Andrographis paniculata by rapid resolution liquid chromatography/time-of-flight mass spectrometry. Molecules, 18(10), 12192-12207.
  • Subramanian R., Asmawi M.Z. and Sadikun A. (2012) A bitter plant with a sweet future? A comprehensive review of an oriental medicinal plant: Andrographis paniculata. Phytochem. Rev., 11(1), 39-75.
  • Takahashi F. and Shinozaki K. (2019) Long-distance signaling in plant stress response. Curr. Opin. Plant Biol., 47, 106-111.
  • Talei D., Valdiani A., Maziah M., Sagineedu S.R. and Abiri R. (2015) Salt stress-induced protein pattern associated with photosynthetic parameters and andrographolide content in Andrographis paniculata Nees. Biosci. Biotechnol. Biochem., 79(1), 51-58.
  • Talei D., Valdiani A., Maziah M., Sagineedu S.R. and Saad M.S. (2013) Analysis of the Anticancer Phytochemicals in Andrographis paniculata Nees. under Salinity Stress. Biomed Res. Int., 2013. Article ID 319047.
  • Trivedi N.P. and Rawal U.M. (2001) Hepatoprotective and antioxidant property of Andrographis paniculata (Nees) in BHC induced liver damage in mice. Indian J. Exp. Biol., 39(1), 41-46.
  • V., Gupta S.K. and Bhat S.V. (2012) Anti-HIV activity of semisynthetic derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. Eur. J. Med. Chem., 56, 368374.
  • Vakil M.M.A. and Mendhulkar V.D. (2013) Salicylic acid and chitosan mediated abiotic stress in cell suspension culture of Andrographis paniculata (Burm. f.) Nees. for andrographolide synthesis. Int. J. Pharm. Sci. Res., 4(9), 3453.
  • Verma N. and Shukla S. (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants, 2(4), 105-113.
  • Verma S., Nizam S. and Verma P.K. (2013) Biotic and abiotic stress signalling in plants. Stress Signaling in Plants: Genomics and Proteomics Perspective, Springer Science, New York, USA, 1, 25-49.
  • Wang Q., Zeng W., Ali B., Zhang X., Xu L. and Liang Z. (2021) Genome-wide identification of WRKY gene family and expression analysis under abiotic stresses in Andrographis paniculata. Biocell, 45(4), 1107.
  • Wasternack C. and Song S. (2017) Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot., 68(6), 1303-1321.
  • Xie X., He Z., Chen N., Tang Z., Wang Q. and Cai Y. (2019) The roles of environmental factors in regulation of oxidative stress in plant. Biomed Res. Int., 2019, Article ID 9732325.
  • Yaghoubian Y., Goltapeh E.M., Pirdashti H., Esfandiari E., Feiziasl V., Dolatabadi H.K., Verma A. and Hassim M.H. (2014) Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress. J. Agric. Res., 3(3), 239-245.
  • Yao W., An T., Xu Z., Zhang L., Gao H., Sun W., Liao B., Jiang C., Liu Z., Duan L. and Ji A. (2020) Genomic-wide identification and expression analysis of AP2/ERF transcription factors related to andrographolide biosynthesis in Andrographis paniculata. Ind. Crops Prod., 157, 112878.
  • Yao X.J., Wainberg M.A. and Parniak M.A. (1992) Mechanism of inhibition of HIV-1 infection in vitro by purified extract of Prunella vulgaris. Virol., 187(1), 56-62.
  • Zaefyzadeh M., Quliyev R.A., Babayeva S.M. and Abbasov M A. (2009) The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces.Turk. J. Boil., 33(1), 1-7.
  • Zaheer M. and Giri C.C. (2015) Multiple shoot induction Uttekar M.M., Das T., Pawar R.S., Bhandari B., Menon and jasmonic versus salicylic acid driven elicitation for enhanced andrographolide production in Andrographis paniculata. Plant Cell, Tissue Organ Cult., 122(3), 553-563.
  • Zandalinas S.I., Mittler R., Balfagón D., Arbona V. and Gómez-Cadenas A. (2018) Plant adaptations to the combination of drought and high temperatures. Physiol. Plant., 162(1), 2-12.
Еще
Статья обзорная