Абскопальный эффект: механизм возникновения и перспективы применения в терапии метастатических форм злокачественных опухолей

Автор: Хачатурян А.В., Булычкин П.В.

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Обзоры

Статья в выпуске: 1 т.23, 2024 года.

Бесплатный доступ

Абскопальный эффект (АЭ) в онкологической практике известен на протяжении 70 лет, однако до последнего времени его клиническая значимость была относительно невелика. Развитие препаратов ингибиторов контрольных точек иммунного ответа привело к активному изучению этого феномена. В настоящее время имеются данные об улучшении выживаемости среди пациентов, у которых регистрировался абскопальный эффект, что открывает новые перспективы лечения онкологических заболеваний различных стадий. В этом обзоре представлены сведения о механизмах абскопального эффекта, экспериментальные и клинические данные, текущие ограничения и возможные перспективы. Цель исследования - изучить современную концепцию возникновения абскопального эффекта, оценить перспективы применения в терапии метастатических форм злокачественных опухолей. Материал и методы исследования. Проведен поиск публикаций в системе Pubmed с 2010 по 2023 г., найдено 286 статей, 72 из них использованы для написания обзора.

Еще

Абскопальный эффект, злокачественные новообразования, моноклональные антитела, лучевая терапия, иммунотерапия, иммуноопосредованный противоопухолевый ответ

Короткий адрес: https://sciup.org/140303739

IDR: 140303739   |   DOI: 10.21294/1814-4861-2024-23-1-120-129

Список литературы Абскопальный эффект: механизм возникновения и перспективы применения в терапии метастатических форм злокачественных опухолей

  • Debela D.T., Muzazu S.G., Heraro K.D., Ndalama M.T., Mesele B.W., Haile D.C., Kitui S.K., Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021; 9. https://doi.org/10.1177/20503121211034366.
  • Charmsaz S., Collins D.M., Perry A.S., Prencipe M. Novel Strategies for Cancer Treatment: Highlights from the 55th IACR Annual Conference. Cancers (Basel). 2019; 11(8): 1125. https://doi.org/10.3390/cancers11081125.
  • Delaney G., Jacob S., Featherstone C., Barton M. The role of radio-therapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005; 104(6): 1129-37. https://doi.org/10.1002/cncr.21324. Erratum in: Cancer. 2006; 107(3): 660.
  • Azzam E.I., Jay-Gerin J.P., Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012; 327(1-2): 48-60. https://doi.org/10.1016/j.canlet.2011.12.012.
  • Chen H., Han Z., Luo Q., Wang Y., Li Q., Zhou L., Zuo H. Radio-therapy modulates tumor cell fate decisions: a review. Radiat Oncol. 2022; 17(1): 196. https://doi.org/10.1186/s13014-022-02171-7.
  • Mole R.H. Whole body irradiation; radiobiology or medicine? Br J Radiol. 1953; 26(305): 234-41. https://doi.org/10.1259/0007-1285-26-305-234.
  • Wirsdörfer F., Jendrossek V. The Role of Lymphocytes in Radio-therapy-Induced Adverse Late Effects in the Lung. Front Immunol. 2016; 7: 591. https://doi.org/10.3389/fimmu.2016.00591.
  • Belka C., Ottinger H., Kreuzfelder E., Weinmann M., Lindemann M., Lepple-Wienhues A., Budach W., Grosse-Wilde H., Bamberg M. Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol. 1999; 50(2): 199-204. https://doi.org/10.1016/s0167-8140(98)00130-3.
  • Yao Z., Jones J., Kohrt H., Strober S. Selective resistance of CD44hi T cells to p53-dependent cell death results in persistence of immunologic memory after total body irradiation. J Immunol. 2011; 187(8): 4100-8. https://doi.org/10.4049/jimmunol.1101141.
  • Kachikwu E.L., Iwamoto K.S., Liao Y.P., DeMarco J.J., Agazaryan N., Economou J.S., McBride W.H., Schaue D. Radiation enhances regulatory T cell representation. Int J Radiat Oncol Biol Phys. 2011; 81(4): 1128-35. https://doi.org/10.1016/j.ijrobp.2010.09.034.
  • Slone H.B., Peters L.J., Milas L. Effect of Host Immune Capability on Radiocurability and Subsequent Transplantability of a Murine Fibrosarcoma2. JNCI: Journal of the National Cancer Institute. 1979; 63(5): 1229-35. https://doi.org/10.1093/jnci/63.5.1229.
  • Demaria S., Ng B., Devitt M.L., Babb J.S., Kawashima N., Liebes L., Formenti S.C. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004; 58(3): 862-70. https://doi.org/10.1016/j.ijrobp.2003.09.012.
  • Marciscano A.E., Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol. 2021; 52. https://doi.org/10.1016/j.smim.2021.101481.
  • ApetohL.,Ghiringhelli F.,TesniereA.,ObeidM.,OrtizC.,CriolloA., Mignot G., Maiuri M.C., Ullrich E., Saulnier P., Yang H., Amigorena S., Ryffel B., Barrat F.J., Saftig P., Levi F., Lidereau R., Nogues C., Mira J.P., ChompretA.,Joulin V.,Clavel-Chapelon F.,BourhisJ.,André F.,DelalogeS., Tursz T., Kroemer G., Zitvogel L. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007; 13(9): 1050-9. https://doi.org/10.1038/nm1622.
  • Burnette B.C., Liang H., Lee Y., Chlewicki L., Khodarev N.N., Weichselbaum R.R., Fu Y.X., Auh S.L. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 2011; 71(7): 2488-96. https://doi.org/10.1158/0008-5472.CAN-10-2820.
  • Bui T.M., Wiesolek H.L., Sumagin R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 2020; 108(3): 787-99. https://doi.org/10.1002/JLB.2MR0220-549R.
  • Yang L., Froio R.M., Sciuto T.E., Dvorak A.M., Alon R., Luscinskas F.W. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-α-activated vascular endothelium under flow. Blood. 2005; 106(2): 584-92. https://doi.org/10.1182/blood-2004-12-4942.
  • Zhao Y., Zhang T., Wang Y., Lu D., Du J., Feng X., Zhou H., Liu N., Zhu H., Qin S., Liu C., Gao X., Yang Z., Liu Z. ICAM-1 orchestrates the abscopal effect of tumor radiotherapy. Proc Natl Acad Sci USA. 2021; 118(14). https://doi.org/10.1073/pnas.2010333118.
  • Matsumura S., Wang B., Kawashima N., Braunstein S., Badura M., Cameron T.O., Babb J.S., Schneider R.J., Formenti S.C., Dustin M.L., Demaria S. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008; 181(5): 3099-107. https://doi.org/10.4049/jimmunol.181.5.3099.
  • Kozin S.V., Kamoun W.S., Huang Y., Dawson M.R., Jain R.K., Duda D.G. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res. 2010; 70(14): 5679-85. https://doi.org/10.1158/0008-5472.CAN-09-4446.
  • Koch C., Fischer N.C., Puchert M., Engele J. Interactions of the chemokines CXCL11 and CXCL12 in human tumor cells. BMC Cancer. 2022; 22(1): 1335. https://doi.org/10.1186/s12885-022-10451-4.
  • Chen M., Qiao G., Hylander B.L., Mohammadpour H., Wang X.Y., Subjeck J.R., Singh A.K., Repasky E.A. Adrenergic stress constrains the development of anti-tumor immunity and abscopal responses following local radiation. Nat Commun. 2020; 11(1): 1821. https://doi.org/10.1038/s41467-020-15676-0.
  • Bao X., Xie L. Targeting purinergic pathway to enhance radio-therapy-induced immunogenic cancer cell death. J Exp Clin Cancer Res. 2022; 41(1): 222. https://doi.org/10.1186/s13046-022-02430-1.
  • Rapoport B.L., Anderson R. Realizing the Clinical Potential of Immunogenic Cell Death in Cancer Chemotherapy and Radiotherapy. Int J Mol Sci. 2019; 20(4): 959. https://doi.org/10.3390/ijms20040959.
  • Liao Y., Liu S., Fu S., Wu J. HMGB1 in Radiotherapy: A Two Headed Signal Regulating Tumor Radiosensitivity and Immunity. Onco Targets Ther. 2020; 13: 6859-71. https://doi.org/10.2147/OTT.S253772.
  • Kono K., Mimura K., Kiessling R. Immunogenic tumor cell death induced by chemoradiotherapy: molecular mechanisms and a clinical translation. Cell Death Dis. 2013; 4(6). https://doi.org/10.1038/cddis.2013.207.
  • Lippert T.P., Greenberg R.A. The abscopal effect: a sense of DNA damage is in the air. Journal of Clinical Investigation. 2021; 131(9). https://doi.org/10.1172/JCI148274.
  • Li A., Yi M., Qin S., Song Y., Chu Q., Wu K. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol. 2019; 12(1): 35. https://doi.org/10.1186/s13045-019-0721-x.
  • Vanpouille-Box C., Alard A., Aryankalayil M.J., Sarfraz Y., Diamond J.M., Schneider R.J., Inghirami G., Coleman C.N., Formenti S.C., Demaria S. DNAexonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017; 8. https://doi.org/10.1038/ncomms15618.
  • Dewan M.Z., Galloway A.E., Kawashima N., Dewyngaert J.K., Babb J.S., Formenti S.C., Demaria S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009; 15(17): 5379-88. https://doi.org/10.1158/1078-0432.CCR-09-0265.
  • Maity A., Mick R., Huang A.C., George S.M., Farwell M.D., Lukens J.N., Berman A.T., Mitchell T.C., Bauml J., Schuchter L.M., O’Hara M., Lin L.L., Demichele A., Christodouleas J.P., Haas N.B., Patsch D.M., Hahn S.M., Minn A.J., Wherry E.J., Vonderheide R.H. Aphase I trial of pembrolizumab with hypofractionated radiotherapy in patients with metastatic solid tumours. Br J Cancer. 2018; 119(10): 1200-7. https://doi.org/10.1038/s41416-018-0281-9.
  • Barsoumian H.B., Ramapriyan R., Younes A.I., Caetano M.S., Menon H., Comeaux N.I., Cushman T.R., Schoenhals J.E., Cadena A.P., Reilly T.P., Chen D., Masrorpour F., Li A., Hong D.S., Diab A., Nguyen Q.N., Glitza I., Ferrarotto R., Chun S.G., Cortez M.A., Welsh J. Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. J Immunother Cancer. 2020; 8(2). https://doi.org/10.1136/jitc-2020-000537.
  • Barsoumian H.B., Sezen D., Menon H., Younes A.I., Hu Y., He K., Puebla-Osorio N., Wasley M., Hsu E., Patel R.R., Yang L., Cortez M.A., Welsh J.W. High Plus Low Dose Radiation Strategy in Combination with TIGIT and PD1 Blockade to Promote Systemic Antitumor Responses. Cancers (Basel). 2022; 14(1): 221. https://doi.org/10.3390/cancers14010221.
  • Malamas A.S., Gameiro S.R., Knudson K.M., Hodge J.W. Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas’ sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation. Oncotarget. 2016; 7(52): 86937-47. https://doi.org/10.18632/oncotarget.13520.
  • Punnanitinont A., Kannisto E.D., Matsuzaki J., Odunsi K., Yendamuri S., Singh A.K., Patnaik S.K. Sublethal Radiation Affects Antigen Processing and Presentation Genes to Enhance Immunogenicity of Cancer Cells. Int J Mol Sci. 2020; 21(7): 2573. https://doi.org/10.3390/ijms21072573.
  • Abuodeh Y., Venkat P., Kim S. Systematic review of case reports on the abscopal effect. Curr Probl Cancer. 2016; 40(1): 25-37. https://doi.org/10.1016/j.currproblcancer.2015.10.001.
  • Tubin S., Popper H.H., Brcic L. Novel stereotactic body radiation therapy (SBRT)-based partial tumor irradiation targeting hypoxic segment of bulky tumors (SBRT-PATHY): improvement of the radiotherapy outcome by exploiting the bystander and abscopal effects. Radiat Oncol. 2019; 14(1): 21. https://doi.org/10.1186/s13014-019-1227-y.
  • Vaidya J.S., Bulsara M., Baum M., Wenz F., Massarut S., Pigorsch S., Alvarado M., Douek M., Saunders C., Flyger H., Eiermann W., Brew-Graves C., Williams N.R., Potyka I., Roberts N., Bernstein M., Brown D., Sperk E., Laws S., Sütterlin M., Corica T., Lundgren S., Holmes D., Vinante L., Bozza F., Pazos M., Blanc-Onfroy M.L., Gruber G., Polkowski W., Dedes K.J., Niewald M., Blohmer J., McReady D., Hoefer R., Kelemen P., Petralia G., Falzon M., Joseph D., Tobias J.S. New clinical and biological insights from the international TARGIT-A randomised trial of targeted intraoperative radiotherapy during lumpectomy for breast cancer. Br J Cancer. 2021; 125(3): 380-9. https://doi.org/10.1038/s41416-021-01440-8.
  • Han Y., Liu D., Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020; 10(3): 727-42.
  • Chen D.S., Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013; 39(1): 1-10. https://doi.org/10.1016/j.immuni.2013.07.012.
  • Yu H., Boyle T.A., Zhou C., Rimm D.L., Hirsch F.R. PD-L1 Expression in Lung Cancer. J Thorac Oncol. 2016; 11(7): 964-75. https://doi.org/10.1016/j.jtho.2016.04.014. Erratum in: J Thorac Oncol. 2017; 12 (1): 157-9.
  • Salama A.K., Hodi F.S. Cytotoxic T-lymphocyte-associated antigen-4. Clin Cancer Res. 2011; 17(14): 4622-8. https://doi.org/10.1158/1078-0432.CCR-10-2232.
  • Seledtsov V.I., Seledtsova G.V., Dorzhieva A.B., Ivanova I.P. Immunoterapiya v kompleksnom lechenii opukholevykh zabolevanii. Sibirskii onkologicheskii zhurnal. 2022; 21(2): 118-29. https://doi.org/10.21294/1814-4861-2022-21-2-118-129.
  • Tsarev I.L., Melerzanov A.V. Obzor podkhodov k immunoterapii v onkologii. Research’n Practical Medicine Journal. 2017; 4(3): 51-65. https://doi.org/10.17709/2409-2231-2017-4-3-5.
  • Golden E.B., Chhabra A., Chachoua A., Adams S., Donach M., Fenton-Kerimian M., Friedman K., Ponzo F., Babb J.S., Goldberg J., Demaria S., Formenti S.C. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol. 2015; 16(7): 795-803. https://doi.org/10.1016/S1470-2045(15)00054-6.
  • Ye H., Pang H., Shi X., Ren P., Huang S., Yu H., Wu J., Lin S. Nivolumab and Hypofractionated Radiotherapy in Patients WithAdvanced Lung Cancer: ABSCOPAL-1 Clinical Trial. Front Oncol. 2021; 11. https://doi.org/10.3389/fonc.2021.657024.
  • Bahig H., Aubin F., Stagg J., Gologan O., Ballivy O., Bissada E., Nguyen-Tan F.P., Soulières D., Guertin L., Filion E., Christopoulos A., Lambert L., Tehfe M., Ayad T., Charpentier D., Jamal R., Wong P. Phase I/II trial of Durvalumab plus Tremelimumab and stereotactic body radiotherapy for metastatic head and neck carcinoma. BMC Cancer. 2019; 19(1): 68. https://doi.org/10.1186/s12885-019-5266-4.
  • Kim H., Ahn M.J., Oh D., Park S., Jung H.A., Lee S.H., Park K., Ahn Y.C. Phase II trial of combined durvalumab plus tremelimumab with proton therapy to boost the abscopal effect for recurrent or metastatic head and neck squamous cell carcinoma. JCO. 2021; 39(15s). https://doi.org/10.1200/JCO.2021.39.15_suppl.6034.
  • Theelen W.S.M.E., Chen D., Verma V., Hobbs B.P., Peulen H.M.U., Aerts J.G.J.V., Bahce I., Niemeijer A.L.N., Chang J.Y., de Groot P.M., Nguyen Q.N., Comeaux N.I., Simon G.R., Skoulidis F., Lin S.H., He K., Patel R., Heymach J., Baas P., Welsh J.W. Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Respir Med. 2021; 9(5): 467-75. https://doi.org/10.1016/S2213-2600(20)30391-X. Erratum in: Lancet Respir Med. 2021; 9(3).
  • Hodi F.S., O’Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B., Gonzalez R., Robert C., Schadendorf D., Hassel J.C., Akerley W., van den Eertwegh A.J., Lutzky J., Lorigan P., Vaubel J.M., Linette G.P., Hogg D., Ottensmeier C.H., Lebbé C., Peschel C., Quirt I., Clark J.I., Wolchok J.D., Weber J.S., Tian J., Yellin M.J., Nichol G.M., Hoos A., Urba W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363(8): 711-23. https://doi.org/10.1056/NEJMoa1003466. Erratum in: N Engl J Med. 2010; 363(13): 1290.
  • Vaddepally R.K., Kharel P., Pandey R., Garje R., Chandra A.B. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers (Basel). 2020; 12(3): 738. https://doi.org/10.3390/cancers12030738.
  • Small E.J., Tchekmedyian N.S., Rini B.I., Fong L., Lowy I., Allison J.P. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin Cancer Res. 2007; 13(6): 1810-5. https://doi.org/10.1158/1078-0432.CCR-06-2318.
  • Bertrand A., Kostine M., Barnetche T., Truchetet M.E., Schaeverbeke T. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med. 2015; 13: 211. https://doi.org/10.1186/s12916-015-0455-8.
  • Formenti S.C., Rudqvist N.P., Golden E., Cooper B., Wennerberg E., Lhuillier C., Vanpouille-Box C., Friedman K., Ferrari de Andrade L., Wucherpfennig K.W., Heguy A., Imai N., Gnjatic S., Emerson R.O., Zhou X.K., Zhang T., Chachoua A., Demaria S. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med. 2018; 24(12): 1845-51. https://doi.org/10.1038/s41591-018-0232-2.
  • Theurich S., Rothschild S.I., Hoffmann M., Fabri M., Sommer A., Garcia-Marquez M., Thelen M., Schill C., Merki R., Schmid T., Koeberle D., Zippelius A., Baues C., Mauch C., Tigges C., Kreuter A., Borggrefe J., von Bergwelt-Baildon M., Schlaak M. Local Tumor Treatment in Combination with Systemic Ipilimumab Immunotherapy Prolongs Overall Survival in Patients with Advanced Malignant Melanoma. Cancer Immunol Res. 2016; 4(9): 744-54. https://doi.org/10.1158/2326-6066.CIR-15-0156.
  • Chicas-Sett R., Morales-Orue I., Rodriguez-Abreu D., Lara-Jimenez P. Combining radiotherapy and ipilimumab induces clinically relevant radiation-induced abscopal effects in metastatic melanoma patients: A systematic review. Clin Transl Radiat Oncol. 2017; 9: 5-11. https://doi.org/10.1016/j.ctro.2017.12.004.
  • Latchman Y., Wood C.R., Chernova T., Chaudhary D., Borde M., Chernova I., Iwai Y., Long A.J., Brown J.A., Nunes R., Greenfield E.A., Bourque K., Boussiotis V.A., Carter L.L., Carreno B.M., Malenkovich N., Nishimura H., Okazaki T., Honjo T., Sharpe A.H., Freeman G.J. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001; 2(3): 261-8. https://doi.org/10.1038/85330.
  • Theelen W.S.M.E., Peulen H.M.U., Lalezari F., van der Noort V., de Vries J.F., Aerts J.G.J.V., Dumoulin D.W., Bahce I., Niemeijer A.N., de Langen A.J., Monkhorst K., Baas P. Effect of Pembrolizumab After Stereotactic Body Radiotherapy vs Pembrolizumab Alone on Tumor Response in Patients With Advanced Non-Small Cell Lung Cancer: Results of the PEMBRO-RT Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019; 5(9): 1276-82. https://doi.org/10.1001/jamaoncol.2019.1478.
  • Tree A.C., Jones K., Hafeez S., Sharabiani M.T.A., Harrington K.J., Lalondrelle S., Ahmed M., Huddart R.A. Dose-limiting Urinary Toxicity With Pembrolizumab Combined With Weekly Hypofractionated Radiation Therapy in Bladder Cancer. Int J Radiat Oncol Biol Phys. 2018; 101(5): 1168-71. https://doi.org/10.1016/j.ijrobp.2018.04.070.
  • RogerA.,FinetA.,BoruB.,BeauchetA.,MazeronJ.J.,OtzmeguineY., Blom A., Longvert C., de Maleissye M.F., Fort M., Funck-Brentano E., Saiag P. Efficacy of combined hypo-fractionated radiotherapy and anti-PD-1 monotherapy in difficult-to-treat advanced melanoma patients. Oncoimmunology. 2018; 7(7). https://doi.org/10.1080/2162402X.2018.1442166.
  • Chen D., Menon H., Verma V., Guo C., Ramapriyan R., Barsoumian H., Younes A., Hu Y., Wasley M., Cortez M.A., Welsh J. Response and outcomes after anti-CTLA4 versus anti-PD1 combined with stereotactic body radiation therapy for metastatic non-small cell lung cancer: retrospective analysis of two single-institution prospective trials. J Immunother Cancer. 2020; 8(1). https://doi.org/10.1136/jitc-2019-000492. Erratum in: J Immunother Cancer. 2020; 8(1).
  • Gerber D.E., Urbanic J.J., Langer C., Hu C., Chang I.F., Lu B., Movsas B., Jeraj R., Curran W.J., Bradley J.D. Treatment Design and Rationale for a Randomized Trial of Cisplatin and Etoposide Plus Thoracic Radiotherapy Followed by Nivolumab or Placebo for Locally Advanced Non-Small-Cell Lung Cancer (RTOG 3505). Clin Lung Cancer. 2017; 18(3): 333-9. https://doi.org/10.1016/j.cllc.2016.10.009.
  • Bozorgmehr F., Hommertgen A., Krisam J., Lasitschka F., Kuon J., Maenz M., Huber P.E., König L., Kieser M., Debus J., Thomas M., Rieken S. Fostering efficacy of anti-PD-1-treatment: Nivolumab plus radiotherapy in advanced non-small cell lung cancer - study protocol of the FORCE trial. BMC Cancer. 2019; 19(1): 1074. https://doi.org/10.1186/s12885-019-6205-0.
  • Bassetti M.F., Sethakorn N., Lang J.M., Schehr J.L., Schultz Z., Morris Z.S., Matkowskyj K.A., Eickhoff J.C., Morris B., Traynor A.M., Duma N., Campbell T.C., Baschnagel A., Leal T. Outcomes and safety analysis of a phase IB trial of stereotactic body radiotherapy (SBRT) to all sites of oligometastatic non-small cell lung cancer combined with durvalumab and tremelimumab. JCO. 2021; 39(15s). https://doi.org/10.1200/JCO.2021.39.15_suppl.e21212.
  • Pakkala S., Higgins K., Chen Z., Sica G., Steuer C., Zhang C., Zhang G., Wang S., Hossain M.S., Nazha B., Beardslee T., Khuri F.R., Curran W., Lonial S., Waller E.K., Ramalingam S., Owonikoko T.K. Durvalumab and tremelimumab with or without stereotactic body radiation therapy in relapsed small cell lung cancer: a randomized phase II study. J Immunother Cancer. 2020; 8(2). https://doi.org/10.1136/jitc-2020-001302.
  • Leary R., Gardner R.B., Mockbee C., Roychowdhury D.F. Boosting Abscopal Response to Radiotherapy with Sargramostim:AReview of Data and Ongoing Studies. Cureus. 2019; 11(3). https://doi.org/10.7759/cureus.4276.
  • Strigari L., Mancuso M., Ubertini V., Soriani A., Giardullo P., Benassi M., D’Alessio D., Leonardi S., Soddu S., Bossi G. Abscopal effect of radiation therapy: Interplay between radiation dose and p53 status. Int J Radiat Biol. 2014; 90(3): 248-55. https://doi.org/10.3109/09553002.2014.874608. Erratum in: Int J Radiat Biol. 2015; 91(3): 294.
  • Dovedi S.J., Adlard A.L., Lipowska-Bhalla G., McKenna C., Jones S., Cheadle E.J., Stratford I.J., Poon E., Morrow M., Stewart R., Jones H., Wilkinson R.W., Honeychurch J., Illidge T.M. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014; 74(19): 5458-68. https://doi.org/10.1158/0008-5472.CAN-14-1258.
  • Slovin S.F., Higano C.S., Hamid O., Tejwani S., Harzstark A., Alumkal J.J., Scher H.I., Chin K., Gagnier P., McHenry M.B., Beer T.M. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013; 24(7): 1813-21. https://doi.org/10.1093/annonc/mdt107.
  • Kwon E.D., Drake C.G., Scher H.I., Fizazi K., Bossi A., van den Eertwegh A.J., Krainer M., Houede N., Santos R., Mahammedi H., Ng S., Maio M., Franke F.A., Sundar S.,Agarwal N., BergmanA.M., Ciuleanu T.E., Korbenfeld E., Sengeløv L., Hansen S., Logothetis C., Beer T.M., McHenry M.B., Gagnier P., Liu D., Gerritsen W.R.; CA184-043 Investigators. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014; 15(7): 700-12. https://doi.org/10.1016/S1470-2045(14)70189-5.
  • D’Andrea M.A., Reddy G.K. Immune SystemActivation in Patients with Metastatic Renal Cell Carcinoma Induced by the Systemic Abscopal Effects of Radiation Therapy. Oncol Res Treat. 2023; 46(1-2): 33-44. https://doi.org/10.1159/000527959.
  • Zhang X., Zhang Y., Liu Y., Yang Y., Dong P., He L., Zhou F. Stereotactic body radiotherapy-induced abscopal effect twice after pembrolizumab failure in hereditary leiomyomatosis and renal cell carcinoma: a case report with genetic and immunologic analysis. Transl Androl Urol. 2021; 10(11): 4304-12. https://doi.org/10.21037/tau-21-644.
Еще
Статья обзорная