Activation of cell death in the sugar cane suspension culture by the exposure to high temperature

Автор: Lyubushkina I.V., Fedyaeva A.V., Pobezhimova T.P., Stepanov A.V., Rikhvanov E.G.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.10, 2014 года.

Бесплатный доступ

The process of cell death in a sugar cane suspension culture after exposure to high temperature (45, 50, 55 and 60 °C) during 10 min has been studied. It has been revealed that treatment of cell culture at 50 °C did not cause an immediate cell death, but 50% of the cells were dying for the next 48 h. Exposure of cell culture to more high temperature (55 - 60 °C) caused a massive cell death occurred instantly after treatment. The development of cell death after the treatment at 50 °C was accompanied by the protoplast condensation, increased generation of reactive oxygen species and hyperpolarization of the mitochondrial inner membrane. Obtained results indicate on the active character of the cell death process, induced by the moderate heat shock in sugar cane suspension culture.

Еще

Saccharum officinarum l, suspension culture, high temperatures, programmed cell death, reactive oxygen species, electrochemical transmembrane potential

Короткий адрес: https://sciup.org/14323904

IDR: 14323904

Список литературы Activation of cell death in the sugar cane suspension culture by the exposure to high temperature

  • Akladious, S.A. (2014) Influence of thiourea application on some physiological and molecular criteria of sunflower (Heliantus annuus L.) plants under conditions of heat stress. Protoplasma, 251, 625-638
  • Bras, M. (2005) Programmed cell death via mitochondria: different modes of dying. Biochem., 70, 231-239
  • Diamond, M., Reape, T.J., Rocha, O., Doyle, S.M., Kacprzyk, J., Doohan, F.M., McCabe, P.F. (2013) The Fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death. PLOS ONE, 8, 1-8
  • Gao, C. Zhang, L., Wen, F., Xing D. (2008) Sorting out the role of reactive oxygen species during plant programmed cell death induced by ultraviolet C overexposure. Plant Signaling & Behavior, 3, 197-198
  • Glantz, S.A. (1998) Primer of biostatistics. McGraw-Hill, New-York. 473 p
  • Hasanuzzaman, M., Nahar, K., Alam, Md.M, Roychowdhury, R., Fujita, M. (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int.J.Mol.Sci., 14, 9643-9684
  • Jones, A.M. (2001) Programmed cell death in development and defense. Plant Physiol., 125, 94-97
  • Krishnamurthy, K.V., Krishnaraj, R., Chozhavendan, R., Christopher, F.S. (2000) The programme of cell death in plants and animals -a comparison. Curr. Sci., 79, 1169-1181
  • Li, Z., Yue, H., Xing, D. (2012) MAP Kinase-6-mediated activation of vacuolar processing enzyme modulates heat shock induced programmed cell death in Arabidopsis. New Phytol., 195, 85-96
  • Maxwell, D.P., Wang, Y., McIntosh, L. (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. USA, 96, 8271-8276
  • Murashige, T., Scoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473-497
  • Petit, P.X., Susin, S.-A., Zamzami, N., Mignotte, B., Kroemer, G. (1996) Mitochondria and programmed cell death: back to the future. FEBS Lett, 396, 7-13
  • Polesskaia, O.G. (2007) Rastitel’naia kletka I aktivnyie formy kisloroda: ucheb. posobie. M.: KDU, 140 p
  • Reape, T.J., Molony, E.M., McCabe, P.F. (2008) Programmed cell death in plants: distinguishing between different modes. J. Exp. Bot., 59, 435-444
  • Reape, T.J., McCabe, P.F. (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis, 15, 249-256
  • Rogers, H.J. (2005) Cell death and organ development in plants. Curr. Top. Dev. Biol., 71, 225-261
  • Simeonova, E. Garstka, M., Kozioł-Lipińska, J., Mostowska, A. (2004) Monitoring the mitochondrial transmembrane potential with the JC-1 fluorochrome in programmed cell death during mesophyll leaf senescence. Protoplasma, 223, 143-153
  • Tiwari, B.S. Belenghi, B., Levine, A. (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol, 128, 1271-1281
  • Vacca, R.A., Valenti, D., Bobba, A., Merafina, R.S., Passarella, S., Marra, E. (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells en route to heat shock-induced cell death. Plant Physiol., 141, 208-219
  • Vaniushin, B.F. (2001) Apoptoz u rasteniy. Uspehi biol. himii, 41, 3-38
  • Wu, M., Huang, J., Xu, S., Ling, T., Xie, Y., Shen, W. (2011) Haem oxygenase delays programmed cell death in wheat aleurone layers by modulation of hydrogen peroxide metabolism. J. Exp. Bot., 62, 235-248
  • Xu, J., Belanger, F., Huang, B. (2008) Differential gene expression in shoots and roots under heat stress for a geothermal and non-thermal Agrostis grass species contrasting in heat tolerance. Environ. Exp. Bot., 63, 240-247
  • Zuppini, A., Andreoli, C., Baldan, B. (2007) Heat stress: an inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol., 48, 1000-1009
Еще
Статья научная