Адаптация и устойчивость растений пшеницы к засухе, опосредованная природными регуляторами роста Bacillus spp.: механизмы реализации и практическая значимость(обзор)
Автор: Ласточкина О.В.
Журнал: Сельскохозяйственная биология @agrobiology
Рубрика: Обзоры, проблемы
Статья в выпуске: 5 т.56, 2021 года.
Бесплатный доступ
Абиотические факторы среды, приводящие к дефициту влаги, значительно ограничивают производство основных сельскохозяйственных культур во всем мире (Z. Ahmad с соавт., 2018). В условиях быстрого роста численности населения и изменения климата важно обеспечить продовольственную безопасность, которая в основном возможна за счет повышения продуктивности стратегически важных зерновых культур, включая пшеницу, которая используется человеком во многих регионах мира и обеспечивает более 50 % потребности в пищевой энергии (S. Asseng с соавт., 2019). Использование полезных стимулирующих рост бактерий Bacillus spp. рассматривается как эффективная, экологичная и безопасная природная стратегия защиты растений от стрессов, приводящих к дефициту влаги (M. Kaushal с соавт., 2019; A. Hussain с соавт., 2020; M. Camaille с соавт., 2021). К настоящему времени ростостимулирующий и защитный эффект Bacillus spp. в условиях различных абиотических стрессов показан для многих видов растений (S. Moon с соавт., 2017; H.G. Gowtham с соавт., 2020; N. Shobana с соавт., 2020), включая пшеницу (G. Sood с соавт., 2020; U. Rashid с соавт., 2021). Хотя механизмы такого физиологического действия Bacillus spp. на растения-хозяева в большей степени остаются неизвестными, предполагается, что они включают i) конкуренцию за пространство и питательные вещества с фитопатогенами и повышение доступности макро- и микроэлементов (S. Danish с соавт., 2019; D. Miljakovic с соавт., 2020; А. Kumar с соавт., 2021); ii) продукцию широкого спектра биологически активных компонентов и защитных соединений (M. Saha с соавт., 2016; R. Çakmakçı с соавт., 2017; N. Ilyas с соавт., 2020) и iii) индукцию у растений реакций системной устойчивости к стрессам (I.A. Abd El-Daim с соавт., 2019; C. Blake с соавт., 2021; U. Rashid с соавт., 2021). Вместе с тем эффективность применения одного и того же штамма Bacillus spp. может варьироваться в зависимости от многих факторов, включая спектр синтезируемых штаммами соединений, вид растений, их эколого-географическое происхождение, сортовые особенности, виды стрессов, которым подвергаются растения в период вегетации, и многое другое (A. Khalid с соавт., 2004; G. Salem с соавт., 2018; O. Lastochkina с соавт., 2020b). В настоящем обзоре обобщена информация, касающаяся современного состояния исследований и представлений о растительно-микробных взаимодействиях с точки зрения защиты пшеницы от засухи. В частности, рассмотрены механизмы, лежащие в основе Bacillus -опосредованной адаптации и устойчивости растений пшеницы к дефициту влаги, включающие синтез осмопротекторных и снижающих окислительный стресс соединений (R. Çakmakçı с соавт., 2017), внутриклеточную передачу и усиление защитных сигналов каскадом посредников, а также регуляцию экспрессии генов защитных белков и межорганную трансдукцию при участии основных фитогормонов и их биосинтеза в целом растении (U. Rashid с соавт., 2021), многочисленных соединений, вовлеченных в процессы повышения биодоступности макро- и микроэлементов и продуктивности (А. Hussain с соавт., 2020; А. Kumar с соавт., 2021). Обсуждается влияние Bacillus spp. на параметры фотосинтеза и водного обмена растений (I.A. Abd El-Daim с соавт., 2019), а также их эффективность в засухоустойчивости пшениц разных агроэкологических групп (Л.И. Пусенкова с соавт., 2020). Затронут вопрос совместного применения бактерий Bacillus spp. с другими природными регуляторами роста с целью повышения их эффективности и сохранения стабильности действия (M. Zafar-ul-Hye с соавт., 2019), а также приведены примеры коммерциализации бациллярных препаратов и их эффективности на пшенице. Представленные в обзоре сведения вносят вклад в понимание фундаментальных механизмов взаимодействия Bacillus spp. с растениями пшеницы в условиях дефицита влаги и могут быть использованы для разработки бациллярных биопрепаратов и их внедрения в экологически ориентированные технологии выращивания пшеницы в условиях меняющегося климата.
Ростостимулирующие бактерии, bacillus spp, пшеница, засуха, защитные механизмы, растительно-микробные взаимодействия, индуцированная системная устойчивость
Короткий адрес: https://sciup.org/142231386
IDR: 142231386 | DOI: 10.15389/agrobiology.2021.5.843rus
Список литературы Адаптация и устойчивость растений пшеницы к засухе, опосредованная природными регуляторами роста Bacillus spp.: механизмы реализации и практическая значимость(обзор)
- FAO. The state of food and agriculture. Climate change, agriculture and food security, 2016. Режим доступа: http://www.fao.org/3/a-i6030e.pdf. Без даты.
- FAO. Cereal supply and demand brief, 2021. Режим доступа: http://www.fao.org/worldfoodsituation/csdb/ru/. Без даты.
- Di Benedetto N.A., Corbo M.R., Campaniello D., Cataldi M.P., Bevilacqua A., Sinigaglia M., Flagella Z. The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiology, 2017, 3(3): 413-434 (doi: 10.3934/microbiol.2017.3.413).
- Ahmad Z., Waraich E.A., Akhtar S., Anjum S., Ahmad T., Mahboob W., Hafeez O.B.A., Tapera T., Labuschagne M., Rizwan M. Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum, 2018, 40: 80 (doi: 10.1007/s11738-018-2651-6).
- Cramer G.R., Urano K., Delrot S., Pezzotti M., Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology, 2011, 11: 163 (doi: 10.1186/1471-2229-11-163).
- Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. Plant drought stress: effects, mechanisms and management. Agronomy Sustainable Development, 2009, 29: 185-212 (doi: 10.1051/agro:2008021).
- Asseng S., Martre P., Maiorano A., Rötter R.P., O’Leary G.J., Fitzgerald G.J., Girousse C., Motzo R., Giunta F., Ali Babar M., Reynolds M.P., Kheir A.M.S., Thorburn P.J., Waha K., Ruane A.C., Aggarwal P.K., Ahmed M., Balkovič J., Basso B., Biernath K., Bindi M., Cammar-ano D., Challinor A.J., De Sanctis G., Dumont B., Eyshi Rezaei E., Fereres E., Ferrise R., Garcia‐Vila M., Gayler S., Gao Y., Horan H., Hoogenboom G., César Izaurralde R., Jabloun M., Jones C.D., Kassie B.T., Kersebaum K.-Ch., Klein C., Koehler A.-K., Liu B., Minoli S., San Martin M.M., Müller C., Kumar S.N., Nendel C., Olesen J.E., Palosuo T., Porter J.R., Priesack E., Ripoche D., Semenov M.A., Stöckle S., Stratonovitch P., Streck T., Supit I., Tao F., Van der Velde M., Wallach D., Wang E., Webber H., Wolf J., Xiao L., Zhang Z., Zhao Z., Zhu Y., Ewert F. Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, 25: 155-173 (doi: 10.1111/gcb.14481).
- Lockyer S., White A., Buttriss J.L. Biofortified crops for tackling micronutrient deficiencies — what impact are these having in developing countries and could they be of relevance within Europe? Nutrition Bulletin, 2018, 43: 319-357 (doi: 10.1111/nbu.12347).
- Baez-Rogelio A., Morales-García Y.E., Quintero-Hernández V., Muñoz-Rojas J. Next generation of microbial inoculants for agriculture and bioremediation. Microbial Biotechnology, 2017, 10(1): 19-21 (doi: 10.1111/1751-7915.12448).
- Ma Y. Beneficial bacteria for disease suppression and plant growth promotion. In: Plant-microbe interactions in agro-ecological perspectives /D. Singh, H. Singh, R. Prabha (eds.). Springer, Singapore, 2017: 513-529 (doi: 10.1007/978-981-10-5813-4_26).
- Numan M., Bashir S., Khan Y., Mumtaz R., Shinwari Z.K., Khan A.L., Khan A., AL-Harrasi A. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological Research, 2018, 209: 21-32 (doi: 10.1016/j.micres.2018.02.003).
- Sarma B.K., Yadav K.S., Singh D.P., Singh H.B. Rhizobacteria mediated induced systemic tolerance in plants: prospects for abiotic stress management. In: Bacteria in Agrobiology: stress management /D. Maheshwari (ed.). Springer-Verlag, Berlin, Heidelberg, 2012: 225-238 (doi: 10.1007/978-3-642-23465-1_11).
- Lastochkina O., Aliniaeifard S., Kalhor M.S., Yuldashev R., Pusenkova L., Garipova S. Plant growth promoting bacteria — biotic strategy to cope with abiotic stresses in wheat. In: Wheat production in changing environments: Management, adaptation and tolerance /M. Hasanuzzaman, K. Nahar, A. Hossain (eds.). Springer, Singapore, 2019: 579-614 (doi: 10.1007/978-981-13-6883-7_23).
- Awan S.A., Ilyas N., Khan I., Raza M.A., Rehman A.U., Rizwan M., Rastogi A., Tariq R., Brestic M. Bacillus siamensis reduces cadmium accumulation and improves growth and antioxidant defense system in two wheat (Triticum aestivum L.) varieties. Plants, 2020, 9: 878 (doi: 10.3390/plants9070878).
- Velloso C.C.V., Ribeiro V.P., de Carvalho C.G., de Oliveira Christiane A.U., de Paula Lana G., Marriel I.E., de Sousa S.M., Gomes E.A. Tropical endophytic Bacillus species enhance plant growth and nutrient uptake in cereals. In: Endophytes: mineral nutrient management. Sustainable development and biodiversity /D.K. Maheshwari, S. Dheeman (eds.). Springer Nature, Switzerland, Cham, 2021: 157-180 (doi: 10.1007/978-3-030-65447-4_7).
- Lastochkina O. Bacillus subtilis-mediated abiotic stress tolerance in plants. In: Bacilli and agrobiotechnology: phytostimulation and biocontrol /M.T. Islam, M.M. Rahman, P. Pandey, M.H. Boehme, G. Haesaert (eds.). Switzerland, Springer, 2019: 97-133 (doi: 10.1007/978-3-030-15175-1_6).
- Sood G., Kaushal R., Sharma M. Significance of inoculation with Bacillus subtilis to alleviate drought stress in wheat (Triticum aestivum L.). Vegetos, 2020, 33: 782-792 (doi: 10.1007/s42535-020-00149-y).
- Akram W., Anjum T., Ali B., Ahmad A. Screening of native Bacillus strains to induce systemic resistance in tomato plants against Fusarium wilt in split root system and its field applications. International Journal of Agriculture and Biology, 2013, 15: 1289-1294.
- Lastochkina O., Seifi Kalhor M., Aliniaeifard S., Baymiev An., Pusenkova L., Garipova S., Kulabuhova D., Maksimov I. Bacillus spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants, 2019, 8(4): 97 (doi: 10.3390/plants8040097).
- Maksimov I.V., Blagova D.K., Veselova S.V., Sorokan A.V., Burkhanova G.F., Cherepanova E.А., Sarvarova S.D., Rumyantsev V., Alekseev Yu., Khayrullin R.M. Recombinant Bacillus subtilis 26DCryChS line with gene Btcry1Ia encoding Cry1Ia toxin from Bacillus thuringiensis promotes integrated wheat defense against pathogen Stagonospora nodorum Berk. and greenbug Schizaphis graminum Rond. Biological Control,2020, 144: 104242 (doi: 10.1016/j.biocontrol.2020.104242).
- Cantoro R., Palazzini J.M., Yerkovich N., Miralles D.J., Chulze S.N. Bacillus velezensis RC 218 as a biocontrol agent against Fusarium graminearum: effect on penetration, growth and TRI5 expression in wheat spikes. Biological Control, 2021, 66: 259-270 (doi: 10.1007/s10526-020-10062-7).
- Lastochkina O., Baymiev A., Shayahmetova A., Garshina D., Koryakov I., Shpirnaya I., Pusenkova L., Mardanshin I., Kasnak C., Palamutoglu R. Effects of endophytic Bacillus subtilis and salicylic acid on postharvest diseases (Phytophthora infestans, Fusarium oxysporum) development in stored potato tubers. Plants, 2020, 9: 76 (doi: 10.3390/plants9010076).
- Miljakovic D., Marinkovic J., Balesevic-Tubic S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 2020, 8: 1037 (doi: 10.3390/microorganisms8071037).
- Cherif H., Marasco R., Rolli E., Ferjani R., Fusi M., Soussi A., Mapelli F., Blilou I., Borin S., Boudabous A., Cherif A., Daffonchio D., Ouzari H. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environmental Microbiology Reports, 2015, 7: 668-678 (doi: 10.1111/1758-2229.12304).
- Blake C., Christensen M.N., Kovács Á. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Molecular Plant-Microbe Interactions, 2021, 34(1): 15-25 (doi: 10.1094/MPMI-08-20-0225-CR).
- Çakmakçı R., Turan M., Kıtır N., Güneş A., Nikerel E., Özdemir B.S., Yıldırım E., Olgun M., Topçuoğlu B., Tüfenkçi Ş., Karaman M.R., Tarhan L., Mokhtari N.E.P. The role of soil beneficial bacteria in wheat production: a review. In: Wheat improvement, management and utilization /R. Wanyera, J. Owuoche (eds.). IntechOpen Limited, London, 2017: 115-149 (doi: 10.5772/67274).
- Shobana N., Sugitha T., Sivakumar U. Plant growth-promoting Bacillus sp. cahoots moisture stress alleviation in rice genotypes by triggering antioxidant defense system. Microbiological Research, 2020, 239: 126518 (doi: 10.1016/j.micres.2020.126518).
- Lastochkina O., Pusenkova L., Yuldashev R., Babaev M., Garipova S., Blagova D., Khairullin R., Aliniaeifard S. Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiology and Biochemistry, 2017, 121: 80-88 (doi: 10.1016/j.plaphy.2017.10.020).
- Ilyas N., Mumtaz K., Akhtar N., Yasmin H., Sayyed R.Z., Khan W., Enshasy H.A.E., Dailin D.J., Elsayed E.A., Ali Z. Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability, 2020, 12: 8876 (doi: 10.3390/su12218876).
- Meenakshi S., Annapurna K., Govindasamy V., Ajit V., Choudhary D.K. Mitigation of drought stress in wheat crop by drought tolerant endophytic bacterial isolates. Vegetos, 2019, 32: 486-493 (doi: 10.1007/s42535-019-00060-1).
- Lastochkina O., Garshina D., Allagulova C., Fedorova K., Koryakov I., Vladimirova A. Application of endophytic Bacillus subtilis and salicylic acid to improve wheat growth and tolerance under combined drought and Fusarium root rot stresses. Agronomy, 2020, 10: 1343 (doi: 10.3390/agronomy10091343).
- Jochum M.D., McWilliams K.L., Borrego E.J., Kolomiets M.V., Niu G., Pierson E.A., Jo Y.K. Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Frontiers in Microbiology, 2019, 10: 2106 (doi: 10.3389/fmicb.2019.02106).
- Hussain A., Ahmad M., Nafees M., Iqbal Z., Luqman M., Jamil M., Maqsood A., Mora-Poblete F., Ahmar S., Chen J.-T., Alyemeni M.N., Ahmad P. Plant-growth-promoting Bacillus and Paenibacillus species improve the nutritional status of Triticum aestivum L.. PLoS ONE, 2020, 15(12): e0241130 (doi: 10.1371/journal.pone.0241130).
- Lastochkina O., Garshina D., Ivanov S., Yuldashev R., Khafizova R., Allagulova Ch., Fedorova K., Avalbaev A., Maslennikova D., Bosacchi M. Seed priming with endophytic Bacillus subtilis modulates physiological responses of two different Triticum aestivum L. cultivars under drought stress. Plants, 2020, 9(12): 1810 (doi: 10.3390/plants9121810).
- Kaushal M. Portraying rhizobacterial mechanisms in drought tolerance: a way forward toward sustainable agriculture. In: PGPR amelioration in sustainable agriculture /A.K. Singh, A. Rumar, P.K. Singh (eds.). Elsevier Inc., 2019: 195-216 (doi: 10.1016/B978-0-12-815879-1.00010-0).
- Oleńska E., Małek W., Wójcik M., Swiecicka I., Thijs S., Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Science of the Total Environment, 2020, 743: 140682 (doi: 10.1016/j.scitotenv.2020.140682).
- Baig K.S., Arshad M., Shaharoona B., Khalid A., Ahmed I. Comparative effectiveness of Bacillus spp. possessing either dual or single growth-promoting traits for improving phosphorus uptake, growth and yield of wheat (Triticum aestivum L.). Annals of Microbiology, 2012, 62(3): 1109-1119 (doi: 10.1007/s13213-011-0352-0).
- Saha M., Sarkar S., Sarkar B., Sharma B.K., Bhattacharjee S., Tribedi P. Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research, 2016, 23(5): 3984-3999 (doi: 10.1007/s11356-015-4294-0).
- Kumar A., Ram Maurya B., Raghuwanshi R. The microbial consortium of indigenous rhizobacteria improving plant health, yield and nutrient content in wheat (Triticum aestivum). Journal of Plant Nutrition, 2021, 44(13): 1942-1956 (doi: 10.1080/01904167.2021.1884706).
- Timmusk S., Abd El-Daim I.A., Copolovici L., Tanilas T., Kännaste A., Behers L., Nevo E., Seisenbaeva G., Stenström E., Niinemets Ü. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE, 2014, 9(5): e96086 (doi: 10.1371/journal.pone.0096086).
- Abd El-Daim I.A., Bejai S., Meijer J. Bacillus velezensis 5113 induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat. Scientific Reports, 2019, 9: 16282 (doi: 10.1038/s41598-019-52567-x).
- Kaushal M. Microbes in cahoots with plants: MIST to hit the jackpot of agricultural productivity during drought. International Journal of Molecular Sciences, 2019, 20: 1769 (doi: 10.3390/ijms20071769).
- Abd El-Daim I.A., Bejai S., Fridborg I., Meijer J. Identifying potential molecular factors involved in Bacillus amyloliquefaciens 5113 mediated abiotic stress tolerance in wheat. Plant Biology, 2018, 20: 271-279 (doi: 10.1111/plb.12680).
- Zafar-ul-Hye M., Danish S., Abbas M., Ahmad M., Munir T.M. ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with Biochar improve wheat productivity under drought stress. Agronomy, 2019, 9: 343 (doi: 10.3390/agronomy9070343).
- Danish S., Zafar-ul-Hye M., Hussain M., Shaaban M., Núñez-Delgado A., Hussain S., Qayyum M.F. Rhizobacteria with ACC-deaminase activity improve nutrient uptake, chlorophyll contents and early seedling growth of wheat under PEG-induced osmotic stress. International Journal of Agriculture and Biology, 2019, 21: 1212-1220(doi: 10.17957/IJAB/15.1013).
- Danish S., Zafar-ul-Hye M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Scientific Reports, 2019, 9: 5999 (doi: 10.1038/s41598-019-42374-9).
- Zhang H., Murzello C., Sun Y., Kim M.S., Xie X., Jeter R.M., Zak J.C., Dowd S.E., Pare P.W. Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Molecular Plant-Microbe Interactions, 2010, 23: 1097-1104 (doi: 10.1094/MPMI-23-8-1097).
- Su A.Y., Niu S.Q., Liu Y.Z., He A.L., Zhao Q., Paré P.W., Li M.F., Han Q.Q., Ali Khan S., Zhang J.L. Synergistic effects of Bacillus amyloliquefaciens (GB03) and water retaining agent on drought tolerance of perennial ryegrass. International Journal of Molecular Sciences, 2017, 18(12): 2651 (doi: 10.3390/ijms18122651).
- Zhang N., Yang D., Wang D., Miao Y., Shao J., Zhou X., Xu Z., Li Q., Feng H., Li S., Shen Q., Zhang R. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genomics, 2015, 16: 685 (doi: 10.1186/s12864-015-1825-5).
- Khan N., Bano A. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS ONE, 2019, 14(9): e0222302 (doi: 10.1371/journal.pone.0222302).
- Gowtham H.G., Brijesh S.S., Murali M., Shilpa N., Melvin P., Mohammed A., Amruthesh K.N., Niranjana S.R. Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiological Research, 2020, 234: 126422 (doi: 10.1016/j.micres.2020.126422).
- Rashid U., Yasmin H., Hassan M.N., Naz R., Nosheen A., Sajjad M., Ilyas N., Keyani R., Jabeen Z., Mumtaz S., Alyemeni M.N., Ahmad P. Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. Plant Cell Reports, 2021, a Collection: 1-21 (doi: 10.1007/s00299-020-02640-x).
- Amna, Ud Din B., Sarfraz S., Xia Y., Kamran M.A., Javed M.T., Sultan T., Munis M.F.H., Chaudhary H.J. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC-deaminase producing Bacillus strains under induced salinity stress. Ecotoxicology and Environmental Safety, 2019, 183: 109466 (doi: 10.1016/j.ecoenv.2019.109466).
- Salem G., Stromberger M.E., Byrne P.F., Manter D.K., El-Feki W., Weir T.L. Genotype-specific response of winter wheat (Triticum aestivum L.) to irrigation and inoculation with ACC deaminase bacteria. Rhizosphere, 2018, 8: 1-7 (doi: 10.1016/j.rhisph.2018.08.001).
- Пусенкова Л.И., Гарипова С.Р., Ласточкина О.В., Юлдашев Р.А. Эффективность инокуляции яровой пшеницы эндофитными бактериями Bacillus subtilis 26Д. Проблемы агрохимии и экологии, 2020, 3: 56-64 (doi: 10.26178/AE.2020.19.55.005).
- Пищик В.Н., Воробьев Н.И., Моисеев К.Г., Свиридова О.В., Сурин В.Г. Влияние бактерий Bacillussubtilis на физиологическое состояние растений пшеницы и микробоценоз почвы при использовании различных доз азотных удобрений. Почвоведение, 2015, 1: 87-94 (doi: 10.7868/S0032180X1501013X).
- Ramesh A., Sharma S.K., Yadav N., Joshi O.P. Phosphorus mobilization from native soil P-pool upon inoculation with phytate-mineralizing and phosphate-solubilizing Bacillus aryabhattai isolates for improved P-acquisition and growth of soybean and wheat crops in microcosm conditions. Agricultural Research, 2014, 3: 118-127 (doi: 10.1007/s40003-014-0105-y).
- Kour D., Rana K.L., Yadav A.N., Yadav N., Kumar V., Kumar A., Sayyed R.Z., Hesham A.E.-L., Dhaliwal H.S., Saxena A.K. Drought-tolerant phosphorus-solubilizing microbes: Biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Plant growth promoting rhizobacteria for sustainable stress management. Microorganisms for sustainability /R. Sayyed, N. Arora, M. Reddy (eds.). Springer, Singapore, 2019: 255-308 (doi: 10.1007/978-981-13-6536-2_13).
- Rodríguez H., Gonzalez F.T., Bashan Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 2006, 287(1-2): 15-21 (doi: 10.1007/s11104-006-9056-9).
- Ramesh A., Sharma S.K., Sharma M.P., Yadav N., Joshi O.P. Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of central India. Applied Soil Ecology, 2014, 73: 87-96 (doi: 10.1016/j.apsoil.2013.08.009).
- Albelda-Berenguer M., Monachon M., Joseph E. Siderophores: from natural roles to potential applications. Advances in Applied Microbiology, 2019, 106: 193-225 (doi: 10.1016/bs.aambs.2018.12.001).
- Beck E.H., Fetitig S., Knake C., Hartig K., Bhattarai T. Specific and unspecific responses of plants to cold and drought stress. Journal of Biosciences, 2007, 32: 501-510 (doi: 10.1007/s12038-007-0049-5).
- Barnawal D., Bharti N., Pandey S.S., Pandey A., Chanotiya C.S., Kalra A. Plant growth promoting rhizobacteria enhances wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiologia Plantarum, 2017, 161: 502-514 (doi: 10.1111/ppl.12614).
- Sharma M.P., Grover M., Chourasiya D., Bharti A., Agnihotri R., Maheshwari H.S., Pareek A., Buyer J.S., Sharma S.K., Schütz L., Mathimaran N., Singla-Pareek S.L., Grossman J.M., Bagyaraj D.J. Deciphering the role of trehalose in tripartite symbiosis among rhizobia, arbuscular mycorrhizal fungi, and legumes for enhancing abiotic stress tolerance in crop plants. Frontiers in Microbiology, 2020, 11: 509919 (doi: 10.3389/fmicb.2020.509919).
- Yadav R., Ror P., Rathore P., Kumar S., Ramakrishna W. Bacillus subtilis CP4, isolated from native soil in combination with arbuscular mycorrhizal fungi promotes biofortification, yield and metabolite production in wheat under field conditions. Journal of Applied Microbiology, 2021, 131(1): 339-359 (doi: 10.1111/jam.14951).
- Zhou C., Ma Z., Zhu L., Xia X., Xie Y., Zhu J., Wang J. Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. International Journal of Molecular Sciences, 2016, 17: 976 (doi: 10.3390/ijms17060976).
- Naseem H., Ahsan M., Shahid M.A., Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Journal of Basic Microbiology, 2018, 58(12): 1009-1022 (doi: 10.1002/jobm.201800309).
- Kasim W.A., Osman M.E., Omar M.N., Abd El-Daim I.A., Bejai S., Meijer J. Control of drought stress in wheat using plant-growth-promoting bacteria. Journal of Plant Growth Regulation, 2013, 32: 122-130 (doi: 10.1007/s00344-012-9283-7).
- Eichmann R., Richards L., Schäfer P. Hormones as go‐betweens in plant microbiome assembly. Plant Journal, 2021, 105(2): 518-541 (doi: 10.1111/tpj.15135).
- Camaille M., Fabre N., Clément C., Ait Barka E. Advances in wheat physiology in response to drought and the role of plant growth promoting rhizobacteria to trigger drought tolerance. Microorganisms, 2021, 9: 687 (doi: 10.3390/microorganisms9040687).
- Sivasakthi S., Kanchana D., Usharani G., Saranraj P. Production of plant growth promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolated from paddy rhizosphere soil of Cuddalore district, Tamil Nadu, India. International Journal of Microbiology Research, 2013, 4(3): 227-233 (doi: 10.5829/idosi.ijmr.2013.4.3.75171).
- Ishak Z., Mohd Iswadi M.K., Russman Nizam A.H., Ahmad Kamil M.J., Ernie Eileen R.R., Wan Syaidatul A., Ainon H. Plant growth hormones produced by endophytic Bacillus subtilis strain LKM-BK isolated from cocoa. Malaysian Cocoa Journal, 2016, 9(1): 127-133.
- Moon S., Asif R., Basharat A. Phylogenetic diversity of drought tolerant Bacillus spp. and their growth stimulation of Zea mays L. under different water regimes. Research Journal of Biotechnology, 2017, 12(10): 38-46.
- Ahmad Z., Wu J., Chen L., Dong W. Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific Reports, 2017, 7(1): 1777 (doi: 10.1038/s41598-017-01940-9).
- Khalid A., Arshad M., Zahir Z.A. Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, 2004, 96: 473-480 (doi: 10.1046/j.1365-2672.2003.02161.x).
- Egamberdieva D., Kucharova Z. Selection for root colonising bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils, 2009, 45(6): 563-571 (doi: 10.1007/s00374-009-0366-y).
- Sessitsch A., Hardoim P., Döring J., Weilharter A., Krause A., Woyke T., Mitter B., Hauberg-Lotte L., Friedrich F., Rahalkar M., Hurek T., Sarkar A., Bodrossy L., van Overbeek L., Brar D., van Elsas J.D., Reinhold-Hurek B. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant-Microbe Interactions, 2012, 25(1): 28-36 (doi: 10.1094/MPMI-08-11-0204).
- Pandey P.K., Singh M.C., Singh S.S., Kumar A.K., Pathak M.M., Shakywar R.C., Pandey A.K. Inside the plants: endophytic bacteria and their functional attributes for plant growth promotion. International Journal of Current Microbiology and Applied Sciences, 2017, 6(2): 11-21 (doi: 10.20546/ijcmas.2017.602.002).
- Kuklinski-Sorbal J., Araujo W.L., Mendes R., Geraldi I.O., Pizzirani-Kleiner A.A., Azevedo J.L. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, 2004, 6(12): 1244-1251 (doi: 10.1111/j.1462-2920.2004.00658.x).
- Gutiérrez‐Mañero F.J., Ramos B., Probanza A., Mehouachi J., Talon M. The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberelins. Physiologia Plantarum, 2008, 111: 206-221 (doi: 10.1034/j.1399-3054.2001.1110211.x).
- Huang D., Wu W., Abrams S.R., Cutler A.J. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. Journal of Experimental Botany, 2008, 59: 2991-3007 (doi: 10.1093/jxb/ern155).
- Kang S.-M., Khan A.L., Waqas M., You Y.-H., Kim J.H., Kim J.-G., Hamayun M., Lee I.-J. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant Interactions, 2014, 9(1): 673-682 (doi: 10.1080/17429145.2014.894587).
- Niu D., Wang X., Wang Y., Song X., Wang J., Guo J., Zhao H. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway. Biochemical and Biophysical Research Communication,2016, 469(1): 120-125 (doi: 10.1016/j.bbrc.2015.11.081).
- Leelasuphakul W., Sivanunsakul P., Phongpaichit S. Purification, characterization and synergistic activity of b-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight pathogens. Enzyme and Microbial Technology, 2006, 38: 990-997 (doi: 10.1016/j.enzmictec.2005.08.030).
- Etesami H., Beattie G.A. Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Probiotics and health /V. Kumar, M. Kumar, S. Sharma, R. Prasad (eds.). Springer, Singapore, 2017: 163-200 (doi: 10.1007/978-981-10-3473-2_7).
- Seifikalhor M., Aliniaeifard S., Hassani B., Niknam V., Lastochkina O. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. Plant Cell Reports, 2019, 38: 847-867 (doi: 10.1007/s00299-019-02396-z).
- Gagné-Bourque F., Bertrand A., Claessens A., Aliferis K.A., Jabaji S. Alleviation of drought stress and metabolic changes in timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Frontiers in Plant Science, 2016, 7: 584 (doi: 10.3389/fpls.2016.00584).
- Ласточкина О.В., Юлдашев Р.А., Пусенкова Л.И. Влияние бактерий Bacillussubtilis 26Д на засухоустойчивость растений яровой мягкой пшеницы сортов лесостепного западносибирского и степного волжского экотипов на начальных этапах онтогенеза. Известия УНЦ РАН, 2017, 3(1): 99-102.
- Martins S.J., Medeiros F.H.V., Lakshmanan V., Bais H.P. Impact of seed exudates on growth and biofilm formation of Bacillus amyloliquefaciens ALB629 in common bean. Frontiers in Microbiology, 2018, 8: 2631 (doi: 10.3389/fmicb.2017.02631).
- Olanrewaju O.S., Ayangbenro A.S., Glick B.R., Babalola O.O. Plant health: Feedback effect of root exudates-rhizobiome interactions. Applied Microbiology and Biotechnology, 2019, 103: 1155-1166 (doi: 10.1007/s00253-018-9556-6).
- Abedinzadeh M., Etesami H., Alikhani H.A. Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnology Reports, 2019, 21: e00305 (doi: 10.1016/j.btre.2019.e00305).
- Li Y., Shi H., Zhang H., Chen S. Amelioration of drought effects in wheat and cucumber by the combined application of super absorbent polymer and potential biofertilizer. PeerJ, 2019, 7: e6073 (doi: 10.7717/peerj.6073).
- Baris O., Sahin F., Turan M., Orhan F., Gulluce M. Use of plant-growth-promoting rhizobacteria (PGPR) seed inoculation as alternative fertilizer inputs in wheat and barley production. Communications inSoil Science andPlant Analysis, 2014, 45(18): 2457-2467 (doi: 10.1080/00103624.2014.912296).
- Afzal A., Saleem S., Iqbal Z., Jan G., Malik M.F.A., Asad S.A. Interaction of rhizobium and Pseudomonas with wheat (Triticum aestivum L.) in potted soil with or without P2O5. Journal of Plant Nutrition, 2014, 37(13): 2144-2156 (doi: 10.1080/01904167.2014.920374).
- Germida J., Walley F. Plant growth-promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biology and Fertility of Soils, 1996, 23(2): 113-120 (doi: 10.1007/BF00336050).
- Mushtaq Z. PGPR: present role, mechanism of action and future prospects along bottlenecks in commercialization. International Journal of Environmental Quality, 2021, 41: 9-15 (doi: 10.6092/issn.2281-4485/11103 ).