Aerial vehicles detection and recognition for UAV vision system

Автор: Muraviev Vadim Sergeevich, Smirnov Sergey Aleksandrovich, Strotov Valery Viktorovich

Журнал: Компьютерная оптика @computer-optics

Рубрика: Image processing, pattern recognition

Статья в выпуске: 4 т.41, 2017 года.

Бесплатный доступ

This article focuses on aerial vehicle detection and recognition by a wide field of view monocular vision system that can be installed on UAVs (unmanned aerial vehicles). The objects are mostly observed on the background of clouds under regular daylight conditions. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The described algorithm is able to detect small targets, but unlike many other approaches is designed to work with large-scale objects as well. The suggested algorithm is also intended to recognize and track the aerial vehicles of specific kind using a set of reference objects defined by their 3D models. For that purpose a computationally efficient contour descriptor for the models and the test objects is calculated. An experimental research on real video sequences is performed. The video database contains different types of aerial vehicles: airplanes, helicopters, and UAVs. The proposed approach shows good accuracy in all case studies and can be implemented in onboard vision systems.

Еще

Aerial vehicles, object detection, contour descriptor, recognition

Короткий адрес: https://sciup.org/140228641

IDR: 140228641   |   DOI: 10.18287/2412-6179-2017-41-4-545-551

Список литературы Aerial vehicles detection and recognition for UAV vision system

  • Tirri, A.E. Advanced Sensing Issues for UAS Collision Avoidance/A.E. Tirri, G. Fasano, D. Accardo, A. Moccia, E. De Leis//Proceedings of the 2nd International Conference on Application and Theory of Automation in Command and Control Systems. -2012. -P. 12-19.
  • Lai, J.S. Airborne vision-based collision-detection system/J.S. Lai, M. Lejias, J.J. Ford//Journal of Field Robotics. -2010. -Vol. 28, Issue 2. -P. 137-157. - DOI: 10.1002/rob.20359
  • Nussberger, A. Aerial object tracking from an airborne platform/A. Nussberger, H. Grabner, L.V. Gool//International Conference on Unmanned Aircraft Systems (ICUAS). -2014. -P. 1284-1293.
  • Kovács L. Visual real-time detection, recognition and tracking of ground and airborne targets/L. Kovács, C. Benedek//Proceedings of SPIE. -2011. -Vol. 7873. -787311. - DOI: 10.1117/12.872314
  • Kovács, L. Flying target detection and recognition by feature fusion/L. Kovács, A. Kovács, Á. Utasi, T. Szirányi//Optical Engineering. -2012. -Vol. 51, Issue 11. -117002. - DOI: 10.1117/1.OE.51.11.117002
  • Alpatov, B. A composite algorithm for variable size object tracking for high performance FPGA-based on-board vision systems/B. Alpatov, S. Korepanov, V. Strotov//Proceedings of SPIE. -2014. -Vol. 9247. -92470A. - DOI: 10.1117/12.2064058
  • Shotton, J. Multi-scale categorical object recognition using contour fragments/J. Shotton, A. Blake, R. Cipolla//IEEE Transactions on Pattern Analysis and Machine Intelligence. -2008. -Vol. 30, Issue 7. -P. 1270-1281. - DOI: 10.1109/TPAMI.2007.70772
  • Shen, W. Deepcontour: A deep convolutional feature learned by positive-sharing loss for contour detection/W. Shen //IEEE Conference on Computer Vision and Pattern Recognition (CVPR). -2015. -P. 3982-3991. - DOI: 10.1109/CVPR.2015.7299024
  • Chan, T.F. Active contours without edges/T.F. Chan, L.A. Vese//IEEE Transactions on Image Processing. -2001. -Vol. 10, Issue 2. -P. 266-277. - DOI: 10.1109/83.902291
  • Wang, X.F. An efficient local ChanVese model for image segmentation/X.F. Wang, D.S. Huang, H. Xu//Pattern Recognition. -2010. -Vol. 43, Issue 3. -P. 603-618. - DOI: 10.1016/j.patcog.2009.08.002
  • Arkin, E.M. An efficiently computable metric for comparing polygonal shapes/E.M. Arkin, L.P. Chew, D.P. Huttenlocher, K. Kedem, J.S. Mitchell//IEEE Transactions on Pattern Analysis and Machine Intelligence. -1991. -Vol. 13, Issue 3. -P. 209-216. - DOI: 10.1109/34.75509
  • Alpatov, B.A. The implementation of contour-based object orientation estimation algorithm in FPGA-based on-board vision system/B.A. Alpatov, P.V. Babayan, M.D. Ershov, V.V. Strotov//Proceedings of SPIE. -2016. -Vol. 10007. -100070A. - DOI: 10.1117/12.2241091
  • Petridis, S. Learning to detect aircraft at low resolutions/S. Petridis, C. Geyer, S. Singh//Proceedings of the 6th International Conference Computer Vision Systems (ICVS 2008). -2008. -P. 474-483.
  • Dey, D. A cascaded method to detect aircraft in video imagery/D. Dey, C.M. Geyer, S. Singh, M. Digioia//The International Journal of Robotics Research. -2011. -Vol. 30, Issue 12. -P. 1527-1540.
  • Kovacs, L. Visual real-time detection, recognition and tracking of ground and airborne targets/L. Kovacs, C. Benedek//Proceedings of SPIE. -2011. -Vol. 7873. -787311. - DOI: 10.1117/12.872314
  • Rong, H.J. Aircraft recognition using modular extreme learning machine/H.J. Rong, Y.X. Jia, G.S. Zhao//Neurocomputing. -2014. -Vol. 128. -P. 166-174. - DOI: 10.1016/j.neucom.2012.12.064
  • Li, X.-D. Automatic aircraft recognition using DSmT and HMM/X.-D. Li, J.-D. Pan, J. Dezert//Proceedings of the 17th International Conference on Information Fusion. -2014.
  • Karine, A. Aircraft recognition using a statistical model and sparse representation/A. Karine, A. Toumi, A. Khenchaf, M. El Hassouni//Proceedings of the International Conference on Big Data and Advanced Wireless Technologies. -2016. -49. - DOI: 10.1145/3010089.3010134
Еще
Статья научная