Пробиотики в кормлении. Рубрика в журнале - Сельскохозяйственная биология
Статья научная
На сегодняшний день существует большой интерес к разработке кормовых экологически безопасных добавок для птицеводства, способных положительно модулировать состав микробиоты и контролировать патогенные микроорганизмы, представляя собой достойную альтернативу антибиотикам. Однако очень мало работ посвящено сопоставлению действия пробиотиков и антибиотиков на структуру микробиома кишечника у бройлеров. В настоящем исследовании мы сравнили состав микробиоты кишечника и зоотехнические показатели у цыплят кросса Cobb 500 в стартерный, ростовой и финишный периоды при добавлении в рацион пробиотика (Bacillus subtilis в составе Целлобактерина®-Т) или антибиотика (Stafac® 110 на основе вирджиниамицина) и показали, что штамм B. subtilis ускоряет становление кишечной микрофлоры. Пробиотик также снижает численность микроорганизмов семейства Campylobacteriaceae , к которому относятся многие виды возбудителей гастроэнтеритов, и повышает переваримость клетчатки. Структуру микробиома в содержимом слепых отростков кишечника изучали методами количественной ПЦР и T-RFLP (terminal restriction fragment length polymorphism) анализа. У цыплят в возрасте 14 сут общая численность бактерий в химусе слепой кишки при введении в рацион антибиотика Stafac® 110 была выше в 9,1 раза (p ≤ 0,05), B. subtilis - в 54,2 раза (p ≤ 0,001) по сравнению с контролем, что указывает на быструю колонизацию микрофлорой желудочно-кишечного тракта у особей из опытных групп. Результаты T-RFLP-анализа показали, что микрофлора в химусе слепых отростков кишечника цыплят на уровне филумов была представлена двумя доминирующими таксонами - Firmicutes и Proteobacteria , в меньшей степени - филумами Actinobacteria , Bacteroidetes и Fusobacteria . Были выявлены таксоны, которые играют важную роль в переваривании некрахмалистых полисахаридов, связанных с синтезом короткоцепочечных жирных кислот, в вытеснении патогенной микрофлоры благодаря продукции бактериоцинов, а также в снижении рН химуса вследствие синтеза органических кислот. Введение в рацион кормового антибиотика оказало преимущественно позитивное влияние на структуру микробиома: возросла доля целлюлозолитических форм и бактерий класса Clostridia (p ≤ 0,05), участвующих в синтезе органических кислот. Сходные позитивные изменения в микробном сообществе отмечали и при интродукции пробиотического штамма B. subtilis , в частности, по сравнению с контролем повышалось обилие бактерий класса Clostridia (p ≤ 0,05). На 14-е сут выращивания применение антибиотика и интродукция пробиотического штамма снизили численность микроорганизмов семейства Campylobacteriaceae (p ≤ 0,05), включающего многие патогенные виды. У 36-суточных курочек, в рацион которых вводили антибиотик Stafac® 110, отмечено увеличение живой массы (с 1845,8±20,9 до 1936,4±17,9 г, р = 0,046). У пробиотического штамма бактерий подобного эффекта не наблюдали (несмотря на восстановление микрофлоры слепых отростков кишечника). Переваримость клетчатки в группе, получавшей штамм B. subtilis , повышалась по сравнению с контролем на 7,1 % (р = 0,0027), кормовой антибиотика - на 2,3 % (р = 0,047), что может быть связано с деятельностью целлюлозолитической микрофлоры. Таким образом, введение в рацион цыплят-бройлеров пробиотического штамма бактерий B. subtilis с целью восстановления микрофлоры и повышения переваримости клетчатки может быть эффективной альтернативой применению кормового антибиотику Stafac ®110 на основе вирджиниамицина.
Бесплатно
Статья научная
В настоящее время рационы дойных коров построены так, чтобы обеспечить максимальную скорость роста и продуктивность за короткий промежуток времени. Однако интенсивное ведение животноводства сказывается в первую очередь на здоровье животных, поскольку нарушаются свойственные жвачным пути обмена веществ. Использование подходов 16S-метагеномики позволяет оценить генетическое и метаболическое разнообразие микробиома коров и установить факторы, которые способствуют увеличению продуктивности и улучшению состояния здоровья. В настоящей работе с применением программного комплекса PICRUSt2 и MetaCyс впервые установлен факт усиления предсказанного функционального потенциала некоторых метаболических путей в микробиоме рубца коров, в рацион которых вводили штамм бактерии Enterococcus faecium 1-35 в составе пробиотика Целлобактерина+. Целью работы была оценка влияния Целлобактерина+ на зоотехнические показатели, состав микробиома рубца и функциональный потенциал микробиоты при введении препарата в рацион дойных коров. Эксперимент проводили в зимне-весенний период 2018 года на базе АО ПЗ «Пламя» (Ленинградская обл., Гатчинский р-н). По принципу аналогов были сформированы две группы (по 10 гол.) дойных коров ( Bos taurus taurus ) голштинизированной черно-пестрой породы 2-й и 3-й лактации со средним годовым удоем 7000-7500 кг. Пробиотик Целлобактерин+ (ООО «БИОТРОФ», г. Санкт-Петербург) вводили в рацион коров опытной группы из расчета 40 г/гол. Продолжительность опыта - 60 сут. Отбор проб рубцового содержимого (10-50 г) от трех коров из каждой группы проводили в конце эксперимента с использованием стерильного зонда. Параллельно отбирали натощак кровь для биохимического анализа из подхвостовой вены. Также определяли массовую долю жира, белка и число соматических клеток в молоке. Тотальную ДНК из исследуемых образцов выделяли с использованием набора Genomic DNA Purification Kit («Fermentas, Inc.», Литва). Амплификацию для последующего NGS-секвенирования (Veriti Thermal Cycler, «Life Technologies, Inc.», США) с эубактериальными праймерами (IDT) 343F (5´-CTCCTACGGRRSGCAGCAG-3´) и 806R (5´-GGACTACNVGGGTWTCTAAT-3´), фланкирующими участок V1V3 гена 16S рРНК. Метагеномное секвенирование (система MiSeq, «Illumina, Inc.», США) осуществляли с набором MiSeq Reagent Kit v3 («Illumina, Inc.», США). Таксономическую принадлежность микроорганизмов до рода определяли в программе RDP Classifier. Рассчитывали индекс a-биоразнообразия микробиома рубца Сhao1. Анализ микробного β-разнообразия выборок методом главных компонент проводили по методике Weighted UniFrac PCoA Emperor с использованием программного пакета QIIME. Реконструкцию и прогнозирование функционального содержания метагенома, семейств генов, ферментов осуществляли при помощи программного комплекса PICRUSt2 (v.2.3.0). Для анализа метаболических путей и ферментов пользовались базой данных MetaCyc (https://metacyc.org/). Скармливание пробиотика оказало достоверное влияние (р = 0,049) на повышение надоев, а также на снижение (р = 0,003) числа соматических клеток в молоке коров (на 38 тыс. · мл-1 · гол.-1). С помощью NGS-секвенирования была дана полная таксономическая и функциональная характеристика рубцовой микробиоты, включая некультивируемых представителей. Выявлены существенные различия между группами по 13 бактериальным родам. В частности, в рубце коров, получавших пробиотик Целлобактерин+ по сравнению контрольной группой снижалась доля представителей порядка Clostridia - бактерий родов Anaerofilum sp. (в 2,3 раза ниже, р ≤ 0,05) и Anaerostipes sp. (в 1,8 раза ниже, р ≤ 0,05), образующих в рубце лактат в качестве конечного продукта метаболизма глюкозы. В рубце животных, в рацион которых вводили Целлобактерин+, уменьшалась доля бактерий родов Campylo-bacter , Gemella , Mycoplasma , Shewanella (р ≤ 0,05) и Fusobacterium (в том числе F. necrophorum ) (p ≤ 0,001), среди которых нередко встречаются патогены. Изменения в таксономической структуре микробиоты рубца под воздействием биопрепарата были связаны с метаболическими сдвигами. Предсказанный функциональный потенциал семи метаболических путей оказался усилен у коров из опытной группы по сравнению с контрольной. Так, при интродукции пробиотического штамма бактерий в 3,5 раза (р ≤ 0,05) увеличивались прогнозируемые метаболические возможности микробиома, связанные с синтезом глиоксилата из аллантоина, и в 2,3 раза (p ≤ 0,05) - связанные с биосинтезом высокоценного для жвачных пропионата из L-глутамата. Полученные данные позволяют предположить важную роль биопрепарата для поддержания гомеостаза метаболических процессов.
Бесплатно