Биоактивные соединения. Рубрика в журнале - Сельскохозяйственная биология
Выделение и физико-химические свойства пектиновых полисахаридов из листьев амаранта
Статья научная
Наряду с традиционными химическими сырьевыми ресурсами (нефть, газ, уголь) все большее значение приобретает растительное сырье. Растения - возобновляемый ресурс, они служат практически единственным источником ценных природных соединений - полисахаридов, которые имеют широкое применение в различных областях науки и техники. Особое место среди них занимает пектин, который входит в состав структурных элементов клеточной ткани высших растений и выполняет функции связывающих и упрочняющих компонентов клеточной стенки, а также регулирует водный обмен. Самым доступным источником пектина служат овощные растения. В настоящей работе впервые показано влияние характера гидролизующего агента и воздействия ультразвуком с частотой 22 кГц на эффективность гидролиза-экстракции и выход пектина из растений Amaranthus tricolor L. сорта Валентина в сравнении с классическим методом. Нашей целью была разработка способов выделения пектиновых полисахаридов из растений A. tricolor сорта Валентина, характеристика их физико-химических свойств и структурных особенностей. В экспериментах использовали высушенные листья овощного амаранта сорта Валентина селекции Всероссийского НИИ селекции и семеноводства овощных культур. Для исследования сахаров в боковых звеньях пектиновых полимеров проводили частичный гидролиз. Навеску образца гидролизовали трифторуксусной кислотой (ТФК) при 120 °С в течение 1 ч, затем ТФК отгоняли под вакуумом. Для определения моносахаридного состава навеску образца пектина гидролизовали 2 н. серной кислотой при 110 °С в течение 5 ч. Гидролизат нейтрализовали гидроксидом бария, осадок отделяли фильтрованием. Фильтраты исследовали методом бумажной хроматографии в системе н - бутанол:уксусная кислота:вода (5:1:4), проявляя хроматограмму анилинофталатным реактивом. Количественное содержание сахаров определяли на жидкостном хроматографе Shimadzu 20-AD Prominence («Shimadzu Corporation», Япония) c рефрактометрическим детектором Shimadzu RID-10A. Инфракрасные спектры были сняты на приборе IRS-113 («Bruker», Германия) с разрешением 1 см-1 в диапазоне 400-4000 см-1 в таблетках KBr. Элементный состав определяли на элементном CHNSO-высокотемпературном анализаторе Euro EA 3028-HT-OM («EuroVector Instruments & Software», Италия). Все измерения методом атомно-силовой микроскопии (АСМ) осуществляли на сканирующем зондовом микроскопе Multi Mode V («Veeco Instruments, Inc.», США) в прерывисто-контактном режиме. Была проведена серия экспериментов по выделению амарантина из листьев амаранта посредством водной экстракции с последующим экстрагированием пектиновых веществ. В качестве гидролизующих агентов на стадии гидролиза-экстракции использовали щавелевую и лимонную кислоты. Оптимизировали температуру, pH, гидромодуль и продолжительность обработки. С целью интенсификации переработки сырья использовали обработку на ультразвуковом дезинтеграторе УЗДН-1 (Россия). Структурное изучение выделенных полисахаридов методом инфракрасной спектрометрии показало их соответствие пектиновым веществам. Методом тонкослойной хроматографии установили, что в составе выделенных полисахаридных фракций значительную долю составляли полимеры арабинозы и галактозы (арабинаны и галактаны либо арабиногалактаны), а также присутствовали следы рамнозы. Методом бумажной хроматографии были получены аналогичные результаты. Согласно данным высокоэффективной жидкостной хроматографии, в пектиновых фракциях содержались глюкоза, галактоза, рамноза, арабиноза и галактуроновая кислота. Выявлено низкое содержание галактуроновой кислоты в гидролизате, полученном под действием как Н2SО4, так и ТФК, - соответственно 0,63 и 1,68 %. Установлены условия гидролиза-экстракции, обеспечивающие максимальный выход пектиновых веществ: 0,5 % раствор щавелевой кислоты с комплексоном (0,5 % гексаметиленодиаминотетрауксусная кислота), 50-55 °С, 4 ч, гидромодуль 1:15. После переосаждения этот образец пектина содержал интенсивную полосу поглощения вал
Бесплатно
Продукция розмариновой кислоты в проростках мелиссы (Melissa officinalis L.) под влиянием ионов меди
Статья научная
Розмариновая кислота (RA), одно из важнейших биологически активных соединений, которое синтезируют растения мелиссы (Melissa officinalis L.), обладает противовирусными, анти-бактериальными, антиоксидантными и противораковыми свойствами. Кроме того, ее применяют как приправу и для улучшения качества выпечки. Ионы меди действуют как кофактор нескольких белков и играют ключевую роль в фотосинтезе, дыхании, синтезе лигнина, реакциях на окисли-тельный стресс и в метаболизме компонентов клеточной стенки, но в высоких концентрациях могут быть токсичны для растений. Мы предположили, что абиотические стрессы как один из внешних факторов, индуцирующих защитный механизм растений, могут способствовать выработке вторичных метаболитов и особенно RA у представителей семейства Lamiaceae. В представленной работе мы изучали накопление RA, экспрессию гена тирозинаминотрансферазы (TAT), содержание флавоноидов и антоцианов, а также активность антиоксидантных ферментов системы защиты растений от окислительного стресса у 45-суточных проростков M. officinalis после обработки разными концентрациями Cu2+ (0, 5, 10, 20 и 30 мкМ). Образцы собирали и исследовали после 8 и 16 ч обработки Cu2+. Показано, что в меньших концентрациях ионы Cu2+ положительно влияли на накопление RA независимо от длительности обработки, с чем согласовывалось увеличение экс-прессии гена TAT, вовлеченного в один из путей синтеза RA. Содержание флавоноидов, антоцианов и растворимого белка в проростках значительно снижалось (за исключением проростков, обработанных в течение 8 ч Cu2+ в концентрации 20 и 30 мкМ). Содержание RA и экспрессия гена ТАТ значительно снизились при максимальной концентрации Cu2+ и длительном воздействии (16 ч). Одновременно в этих проростках мы отмечали повышение активности супероксиддисмутазы и пероксидазы. Последнее может указывать на то, что более низкие концентрации Cu2+ вызывают окислительный стресс, активные формы кислорода (АФК), которые выполняют роль сигнальных молекул, накапливаются, и из-за их положительного воздействия на экспрессию гена ТАТ образуется больше RA. Напротив, при самой высокой концентрации ионов меди АФК подавляли экспрессию гена ТАТ и тем самым предотвращали деградацию продукта гена.
Бесплатно