Минеральные элементы и токсиканты. Рубрика в журнале - Сельскохозяйственная биология

Публикации в рубрике (2): Минеральные элементы и токсиканты
все рубрики
Бактериальная люминесценция марганец- и кобальтсодержащих ультрадисперсных частиц (Mn2O3 и Co3O4) в рубцовой жидкости

Бактериальная люминесценция марганец- и кобальтсодержащих ультрадисперсных частиц (Mn2O3 и Co3O4) в рубцовой жидкости

Шошин Д.Е., Сизова Е.А., Камирова А.М.

Статья научная

Наряду с основными нутриентами (белками, жирами и углеводами) важное значение в кормлении сельскохозяйственных животных, включая крупный рогатый скот и птицу, имеют минеральные элементы (Д.В. Машнин с соавт., 2022; Т.М. Околелова с соавт., 2018). Они включаются в состав премиксов в неорганическом или органическом виде (М.Ю. Мишанин с соавт., 2021; О.С. Кощаева, 2018). Однако более перспективны нанокомпозиции, свойства которых могут быть смоделированы посредством изменения формы, путей синтеза и размера ультрадисперсных частиц (УДЧ) (S. Miroshnikov с соавт., 2019). Вместе с тем использование УДЧ имеет ряд ограничений, связанных с их потенциальной токсичностью (E. Rusakova соавт., 2015). Также известно, что симбионтная микрофлора формирует многокомпонентную суспензию органических веществ, промежуточных и конечных метаболитов микробиома, способных взаимодействовать с УДЧ (Б.С. Нуржанов с соавт., 2019). В настоящей работе впервые установлена динамика люминесценции бактериального тест-объекта при внесении в питательную среду комплекса УДЧ и рубцовой жидкости. Показано, что эта комбинация нивелирует токсичность наноструктур. Целью нашей работы была оценка свойств ультрадисперсных частиц на примере различных концентраций окиси марганца и кобальта в биохимической среде руминального сообщества на основе метода ингибирования бактериальной люминесценции. Исследование проводили на базе центра «Нанотехнологии в сельском хозяйстве» ФГБУ ФНЦ БСТ РАН (г. Оренбург) в 2022 году. Химически чистые для анализа (99 %) УДЧ окиси марганца Mn2O3 и кобальта Co3O4 в количестве 157,8 и 240,7 мг диспергировали ультразвуком частотой 35 кГц в 1 мл дистиллированной воды в течение 30 мин при 25 °C. Отбор рубцовой жидкости (РЖ) проводили через хроническую фистулу рубца (d = 80 мм, «ANKOM Technology Corporation», США) спустя 3 ч после кормления у быка породы казахская белоголовая, основной рацион которого включал 30 % концентратов и 70 % грубых кормов без добавления УДЧ. Использовали люминесцентный бактериальный тест «Эколюм» («НВО ИММУНОТЕХ», Россия), представленный лиофилизированной культурой микроорганизмов Escherichia coli , несущих гибридную плазмиду pUC19 с клонированными lux CDABE генами P. leiognathi 54D10. В биолюминесцентном планшете проводили серию двукратных разбавлений суспензии УДЧ и РЖ, начиная со следующих значений: 50 мкл Mn2O3 (1 моль/л) + 50 мкл РЖ; 50 мкл Co3O4 (1 моль/л) + 50 мкл РЖ; 50 мкл Mn2O3 (1 моль/л) + 50 мкл дистиллированной воды; 50 мкл Co3O4 (1 моль/л) + 50 мкл дистиллированной воды; 100 мкл РЖ; 100 мкл дистиллированной воды (контроль). Затем в каждую ячейку добавляли по 100 мкл тест-системы «Эколюм», получая итоговые концентрации УДЧ от 0,25 до 0,00025 моль/л и разведения РЖ от 1:2 до 1:2048 в чистом опыте и от 1:4 до 1:4096 в опыте с УДЧ. Токсичность исследуемых образцов определяли на многофункциональном микропланшетном ридере TECAN Infinite F200 («Tecan Austria GmbH», Австрия), фиксируя значение люминесценции бактериального штамма E. coli K12 TG1 в среде с разным содержанием ультрадисперсных частиц и рубцовой жидкости в течение 3 ч с периодом 5 мин. На основе полученных данных строили графики, отражающие динамику ингибирования биолюминесценции, и вычисляли индекс токсичности (T). Также рассчитывали относительное значение биолюминесценции (A). Установлено, что УДЧ в чистом виде вызывают дозозависимое ингибирование бактериальной люминесценции, подавляя свыше 50 % свечения (ЕС50) даже при разведении в 2048 раз (0,00025 моль/л). Значения индекса токсичности, при вычислении которого контроль принимается за 100 %, наглядно свидетельствуют о снижении ядовитых свойств суспензий с уменьшением в них доли УДЧ. Для Mn2O3 эта величина составляла от 89,76 % при концентрации 0,25 моль/л до 38,57 % при 0,00025 моль/л на 1-й мин эксперимента и от 95,16 до 52,85 % в конце 3-го ч; для Co3O4 - соответственно 99,44 и 32,80 % на 1-й мин, 99,43 и 54,72 % в конце 3-го ч. Аналогичные показатели в опыте с рубцовой жидкостью проявлялись лишь на первых минутах экспозиции, после чего светимость значительно возрастала, достигая 769,10 % к контролю при 64-кратном разведении. При комбинации рубцовой жидкости с УДЧ наблюдалась регрессия ядовитых свойств последних, хотя максимальные показатели светимости в комплексе с Mn2O3 составляли лишь 43,28 % от аналогичных для нативной РЖ, в сочетании с Co3O4 - 36,44 %. Наблюдаемые изменения люминесценции были разделены на три типа: контрольный (свечение меняется пропорционально фазам роста бактериальной культуры; без добавок); глубокий (подавление люминесценции на протяжении всего периода экспозиции; с добавлением УДЧ); конкурентный (рост свечения от начала к концу опыта; с добавлением РЖ или комплекса РЖ + УДЧ). Таким образом, сочетание рубцовой жидкости с частицами окислов металлов приводит к ингибиции их токсичности по отношению к тест-объекту.

Бесплатно

Математическая модель перехода свинца из периферической крови в органы и мышечную ткань овец (Ovis aries)

Математическая модель перехода свинца из периферической крови в органы и мышечную ткань овец (Ovis aries)

Епимахов В.Г., Мирзоев Э.Б., Исамов Н.Н.

Статья научная

Для получения продукции животноводства, соответствующей санитарно-гигиеническим нормативам, необходимо обосновать допустимые пределы суточного поступления свинца с рационом в организм сельскохозяйственных животных. В настоящей работе на основании разработанной нами модели впервые определены параметры транспорта свинца между периферической кровью, органами и мышечной тканью в зависимости от суточной концентрации металла в рационе и длительности его поступления в организм. Нашей целью была разработка и параметризация камерной модели перехода свинца из периферической крови в органы и мышечную ткань овец при хроническом поступлении металла с рационом. Эксперименты проводили на 27 овцах ( Ovis aries ) романовской породы в 2012 году. Возраст животных - 1-1,5 года, масса тела - 33,5±0,7 кг. Овец содержали в боксах по 4-5 гол. в условиях вивария Всероссийского научно-исследовательского института физиологии, биохимии и питания (ВНИИФБиП, г. Боровск, Калужская обл.). Кормление осуществлялось 2 раза в сутки при свободном доступе к воде. Животные были разделены на четыре группы: I группа (контроль) - 4 гол., II группа - 5 гол., III и IV группы - по 9 гол. Содержание свинца в рационе составляло для животных II группы 5 мг•кг-1 (1 МДУ), для III группы - 25 мг•кг-1 (5 МДУ), для IV группы - 150 мг•кг-1 (30 МДУ). Нитрат свинца Pb(NO3)2 скармливали с комбикормом 1 раз в сутки с учетом количества корма (в среднем 2 кг), поступающего в желудочно-кишечный тракт. Для этого 100 г комбикорма смешивали с 50 мл раствора нитрата свинца определенной концентрации. При этом суточное поступление металла для овец II группы составило 10 мг/гол., III группы - 50 мг/гол., IV группы - 300 мг/гол., или 0,3, 1,5 и 9 мг•кг-1 массы тела. Образцы крови брали из яремной вены до кормления перед началом эксперимента (фон), а также на 30-е, 60-е и 90-е сут. В течение срока исследования проводили убой животных: до затравки - 1 гол.; на 30-е и 60-е сут - по 1 гол. из II группы и по 3 гол. из III и IV групп; на 90-е сут - по 3 гол. из каждой группы. Закономерности распределения и накопления свинца в органах и тканях овец были проанализированы с использованием математической модели, в которой печень, почки, селезенка, легкие, сердце и мышечная ткань представлены в виде отдельных камер, физиологически связанных между собой транспортными коммуникациями. Установлены изменения констант скорости перехода свинца из периферической крови в разные органы и мышечную ткань в зависимости от содержания металла в рационе и продолжительности его поступления в организм. Определены параметры, характеризующие соотношение констант скорости перехода свинца из крови в органы и обратно, из органов в кровь. Показано, что значения параметров для печени и почек относительно других органов и тканей (селезенка, легкие, сердце и мышечная ткань) ниже соответственно в 10 и 100 раз. Проведен сравнительный анализ экспериментальных данных и расчетов на модели. Степень совпадения результатов показывает, что камерная модель удовлетворительно описывает переход свинца из периферической крови в органы и мышечную ткань овец. Разработанная математическая модель рекомендована для оценки и прогноза безопасности продукции овцеводства.

Бесплатно

Журнал