Активированные минеральные наполнители для модификации цементных композитов

Автор: Вдовин Е.А., Коновалов Н.В.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 7 (105), 2022 года.

Бесплатный доступ

Объектом исследования являются активированные минеральные наполнители, используемые для модификации цементных композитов. Модификация активированными наполнителями цементных композитов дает возможность повысить уровень прочностных показателей дорожно-строительного материала, а также снизить содержание основного вяжущего. В качестве минерального наполнителя использовался доломит. Механоактивация наполнителей проводилась в вихревом аппарате Vortex 297, при различном времени экспозиции. Для обеспечения эффективной активации определялись оптимальный коэффициент заполнения помольной камеры и размер ферромагнитных частиц. Изучен характер распределения дисперсности частиц минерального наполнителя на лазерном анализаторе в зависимости от времени активации. Состояние поверхности минерального наполнителя после активации оценивалось методом кислотно-основных взаимодействий с определением свободной поверхностной энергии, уровень показателей которой характеризует способность поверхности к межфазному взаимодействию. Установлено влияние времени активации и содержания минерального наполнителя на прочность при сжатии образцов цементного камня. Определено оптимальное время активации минерального наполнителя в аппарате вихревого слоя.

Еще

Минеральные наполнители, механическая активация, вихревой аппарат, свободная поверхностная энергия, дисперсность

Короткий адрес: https://sciup.org/143182692

IDR: 143182692   |   DOI: 10.4123/CUBS.105.11

Список литературы Активированные минеральные наполнители для модификации цементных композитов

  • Liu, Y., Wang, J., Hu, S., Cao, S. and Wang, F. (2022) Enhancing the Mechanical Behaviour of Concretes through Polymer Modification of the Aggregate-Cement Paste Interface. Journal of Building Engineering, 104605. https://doi.org/10.1016/j.jobe.2022.104605.
  • Wang, Y., Shui, Z., Wang, L., Gao, X., Huang, Y., Song, Q. and Liu, K. (2020) Alumina-Rich Pozzolan Modification on Portland-Limestone Cement Concrete: Hydration Kinetics, Formation of Hydrates and Long-Term Performance Evolution. Construction and Building Materials, 258, 119712. https://doi.org/10.1016/j.conbuildmat.2020.119712.
  • Sharma, R., Jang, J.G. and Bansal, P.P. (2022) A Comprehensive Review on Effects of Mineral Admixtures and Fibers on Engineering Properties of Ultra-High-Performance Concrete. Journal of Building Engineering, 45, 103314. https://doi.org/10.1016/j.jobe.2021.103314.
  • Deng, S., Ren, P., Jiang, Y., Shao, X. and Ling, T.-C. (2022) Use of CO2-Active BOFS Binder in the Production of Artificial Aggregates with Waste Concrete Powder. Resources, Conservation and Recycling, 182, 106332. https://doi.org/10.1016/j.resconrec.2022.106332.
  • Gupta, M., Raj, D.R. and Kumar Sahu, D.A. (2022) Effect of Rice Husk Ash, Silica Fume & GGBFS on Compressive Strength of Performance Based Concrete. Materials Today: Proceedings, 55, 234–239. https://doi.org/10.1016/j.matpr.2021.06.343.
  • Nie, Y., Shi, J., He, Z., Zhang, B., Peng, Y. and Lu, J. (2022) Evaluation of High-Volume Fly Ash (HVFA) Concrete Modified by Metakaolin: Technical, Economic and Environmental Analysis. Powder Technology, 397, 117121. https://doi.org/10.1016/j.powtec.2022.117121.
  • Alqarni, A.S. (2022) A Comprehensive Review on Properties of Sustainable Concrete Using Volcanic Pumice Powder Ash as a Supplementary Cementitious Material. Construction and Building Materials, 323, 126533. https://doi.org/10.1016/j.conbuildmat.2022.126533.
  • Xu, J., Lu, D., Zhang, S., Xu, Z. and Hooton, R. (2021) Reaction Mechanism of Dolomite Powder in Portland-Dolomite Cement. Construction and Building Materials, 270, 121375. https://doi.org/10.1016/j.conbuildmat.2020.121375.
  • Tian, W., Liu, Y., Wang, M. and Wang, W. (2021) Performance and Economic Analyses of Low-Energy Ohmic Heating Cured Sustainable Reactive Powder Concrete with Dolomite Powder as Fine Aggregates. Journal of Cleaner Production, 329, 129692. https://doi.org/10.1016/j.jclepro.2021.129692.
  • Xu, J., Chen, J., Lu, D., Xu, Z. and Hooton, R.D. (2019) Effect of Dolomite Powder on the Hydration and Properties of Calcium Sulfoaluminate Cements with Different Gypsum Contents. Construction and Building Materials, 225, 302–310. https://doi.org/10.1016/j.conbuildmat.2019.07.050.
  • Kazemian, M. and Shafei, B. (2022) Internal Curing Capabilities of Natural Zeolite to Improve the Hydration of Ultra-High Performance Concrete. Construction and Building Materials, 340, 127452. https://doi.org/10.1016/j.conbuildmat.2022.127452.
  • Rahul, P., Prasad Ravella, D. and Chandra Sekhara Rao, P.V. (2022) Durability Assessment of Self-Curing High Performance Concretes Containing Zeolite Admixture. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.01.352.
  • Zolghadri, A., Ahmadi, B. and Taherkhani, H. (2022) Influence of Natural Zeolite on Fresh Properties, Compressive Strength, Flexural Strength, Abrasion Resistance, Cantabro-Loss and Microstructure of Self-Consolidating Concrete. Construction and Building Materials, 334, 127440. https://doi.org/10.1016/j.conbuildmat.2022.127440.
  • Ibragimov, R. and Fediuk, R. (2019) Improving the Early Strength of Concrete: Effect of Mechanochemical Activation of the Cementitious Suspension and Using of Various Superplasticizers. Construction and Building Materials, 226, 839–848. https://doi.org/10.1016/j.conbuildmat.2019.07.313.
  • Stroganov, V., Sagadeev, E., Ibragimov, R. and Potapova, L. (2020) Mechanical Activation Effect on the Biostability of Modified Cement Compositions. Construction and Building Materials, 246, 118506. https://doi.org/10.1016/j.conbuildmat.2020.118506.
  • Vdovin, E., Stroganov, V. and Konovalov, N. (2021) Modification of Road Soil Cement with Activated Fillers. Lecture Notes in Civil Engineering. https://doi.org/10.1007/978-3-030-72404-7_33.
  • Khaydarov, B., Suvorov, D., Pazniak, A., Kolesnikov, E., Gorchakov, V., Mamulat, S. and Kuznetsov, D. (2018) Efficient Method of Producing Clinker-Free Binding Materials Using Electromagnetic Vortex Milling. Materials Letters, 226, 13–18. https://doi.org/10.1016/j.matlet.2018.05.016.
  • Zhang, D.J., Tian, X.F., Hou, H.B., Liu, H. and Tan, S.K. (2007) Mechanical Behavior and Mechanism of Stabilizing Soft Soil by Slag Cementitious Material. Yantu Lixue/Rock and Soil Mechanics, 28. https://www.mendeley.com/catalogue/a200eb00-b973-326f-bf49-693263d11e0a/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_catalog&userDocumentId=%7Beef21da3-68fa-3d3a-976a-3f2eafa4dc53%7D
  • E.A. Vdovin, V.F. Stroganov, N.V. Konovalov, L.F. Mavliev: Analysis of the possibilities of modification and the choice of rational methods and technologies for strengthening the soil by activated fillers for road construction // News KSUAE 2018 № 4 (46) , p. 274-282. ISSN: 2073-1523, eISSN: 2073-154X. https://izvestija.kgasu.ru/en/nomera-zhernala/new-issues?sod=sod4_2018&idizv=40
  • Lobel, B.T., Robertson, H., Webber, G.B., Ireland, P.M. and Wanless, E.J. (2022) Impact of Surface Free Energy on Electrostatic Extraction of Particles from a Bed. Journal of Colloid and Interface Science, 611, 617–628. https://doi.org/10.1016/j.jcis.2021.12.117.
  • Huang, T., Luo, J., Luo, R. and Tu, C. (2022) Investigation on the Relationship between the Surface Texture Index and the Surface Free Energy of Aggregate. Construction and Building Materials, 325, 126759. https://doi.org/10.1016/j.conbuildmat.2022.126759.
  • Çıtak, A. and Yarbaş, T. (2022) Using Contact Angle Measurement Technique for Determination of the Surface Free Energy of B-SBA-15-x Materials. International Journal of Adhesion and Adhesives, 112, 103024. https://doi.org/10.1016/j.ijadhadh.2021.103024.
  • Kuznetsov, G.V., Islamova, A.G., Orlova, E.G., Ivashutenko, A.S., Shanenkov, I.I., Zykov, I.Y. and Feoktistov, D.V. (2021) Influence of Roughness on Polar and Dispersed Components of Surface Free Energy and Wettability Properties of Copper and Steel Surfaces. Surface and Coatings Technology, 422, 127518. https://doi.org/10.1016/j.surfcoat.2021.127518.
  • Starostina, I.A., Kolpakova, M. V. and Stoyanov, O. V. (2021) An Estimation of Adhesive Interaction of Polymer Coatings with Metals Using the van Oss–Chaudhury–Good Equation. Polymer Science, Series D, 14, 8–12. https://doi.org/10.1134/S1995421221010238.
  • Ibragimov R. A., Potapova L. I., Korolev E. V. Investigation of structure formation of activated nanomodified cement stone by IR spectroscopy. News KSUAE. 2021. № 3 (57). P. 41–49. https://doi.org/ 10.52409/20731523_2021_3_41
  • Fang, K., Zhao, J., Wang, D., Wang, H. and Dong, Z. (2022) Use of Ladle Furnace Slag as Supplementary Cementitious Material before and after Modification by Rapid Air Cooling: A Comparative Study of Influence on the Properties of Blended Cement Paste. Construction and Building Materials, 314, 125434. https://doi.org/10.1016/j.conbuildmat.2021.125434.
  • Moreno de los Reyes, A.M., Suárez-Navarro, J.A., Alonso, M.D.M., Gascó, C., Sobrados, I. and Puertas, F. (2022) Hybrid Cements: Mechanical Properties, Microstructure and Radiological Behavior. Molecules, 27. https://doi.org/10.3390/molecules27020498.
  • Wang, Z., Chu, H., Wang, J., Feng, E., Zhang, Y. and Lyu, X. (2022) Mechanical Activation of Siliceous Tailings and Its Application as Cement Admixtures. Minerals Engineering, 177. https://doi.org/10.1016/j.mineng.2021.107366.
  • Robayo-Salazar, R., Valencia-Saavedra, W. and Mejía de Gutiérrez, R. (2022) Recycling of Concrete, Ceramic, and Masonry Waste via Alkaline Activation: Obtaining and Characterization of Hybrid Cements. Journal of Building Engineering, 46. https://doi.org/10.1016/j.jobe.2021.103698.
  • Korkmaz, A.V. (2022) Mechanical Activation of Diabase and Its Effect on the Properties and Microstructure of Portland Cement. Case Studies in Construction Materials, 16. https://doi.org/10.1016/j.cscm.2021.e00868.
Еще
Статья научная