Algorithm for calculation of the power density distribution of the laser beam to create a desired thermal effect on technological objects

Автор: Murzin Serguei Petrovich, Bielak Robert, Liedl Gerhard

Журнал: Компьютерная оптика @computer-optics

Рубрика: Opto-it

Статья в выпуске: 5 т.40, 2016 года.

Бесплатный доступ

Based on the use of methods for solving the inverse problem of heat conduction, we developed an algorithm for calculating the power density distribution of the laser beam to create a desired thermal effect on technological objects. It was shown that the redistribution of power density of moving distributed surface heat sources can adjust the temperature distribution in the treated zone. The results of thermal processes calculation show the ability of the developed algorithm to create a more uniform temperature field across the width of the heat affected zone. Equalization of maximum temperature values is achieved in the center and on the periphery of the heat affected zone with an increase in the width of the regions, where required temperature is reached. The application of diffractive optical elements gives an opportunity to obtain the required properties of treated materials in the heat affected zone. The research performed has enabled parameters of the temperature field in chrome-nickel-molybdenum steel to be adjusted for laser heat treatment. In addition to achieving uniform temperature conditions across the width of the heat affected zone, the proposed approach allows the increase of the width of the isotherms of the temperature fields; this provides an opportunity to process a larger area per unit time at the same laser beam power.

Еще

Laser beam, power density distribution, formation, moving heat source, material, thermal effect

Короткий адрес: https://sciup.org/14059607

IDR: 14059607   |   DOI: 10.18287/2412-6179-2016-40-5-679-684

Список литературы Algorithm for calculation of the power density distribution of the laser beam to create a desired thermal effect on technological objects

  • Advances in laser materials processing: technology, research and application/Ed. by J. Lawrence, J. Pou, D.K.Y. Low, E. Toyserkani. -Cambridge, UK: Woodhead Publishing, 2010. -ISBN: 978-1-84569-474-6.
  • Ion, J.C. Laser processing of engineering materials: principles, procedure and industrial application/J.C. Ion. -Oxford, UK: Elsevier Butterworth-Heinemann, 2005. -ISBN: 978-0-7506-6079-2.
  • Laser processing of materials: fundamentals, applications and developments/Ed. by P. Schaaf. -Berlin, Heidelberg: Springer-Verlag, -2010. -ISBN: 978-3-642-13280-3. - DOI: 10.1007/978-3-642-13281-0
  • LIA handbook of laser materials processing/Ed. by J.F. Ready, D.F. Farson, T. Feeley. -Berlin, Heidelberg: Springer-Verlag, 2001. -ISBN: 978-3-540-41770-5.
  • Dahotre, N.B. Laser fabrication and machining of materials/N.B. Dahotre, S.P. Harimkar. -New York, US: Springer Science+Business Media, 2008. -ISBN: 978-0-387-72343-3. - DOI: 10.1007/978-0-387-72344-0
  • Steen, W.M. Laser material processing/W.M. Steen, J. Mazumder. -4th ed. -London, UK: Springer, 2010. -ISBN: 978-1-84996-061-8. - DOI: 10.1007/978-1-84996-062-5
  • Kannatey-Asibu, E. Jr. Principles of laser materials processing/E. Kannatey-Asibu Jr. -Hoboken, NJ: John Wiley & Sons, 2009. -ISBN: 978-0-470-17798-3. - DOI: 10.1002/9780470459300
  • Laser beam shaping: theory and techniques/Ed. by F.M. Dickey, S.C. Holswade. -New York, Basel: Marcel Dekker, Inc., 2000. -ISBN: 0-8247-0398-7.
  • Doskolovich, L.L. Focusator for laser-branding/L.L. Doskolovich, N.L. Kazanskiy, S.I. Kharitonov, G.V. Usplenjev//Optics and Lasers in Engineering. -1991. -Vol. 15(5). -P. 311-322. - DOI: 10.1016/0143-8166(91)90018-O
  • Volkov, A.V. A method for the diffractive microrelief forming using the layered photoresist growth/A.V. Volkov, N.L. Kazanskiy, O.Ju. Moiseev, V.A. Soifer//Optics and Lasers in Engineering. -1998. -Vol. 29(4-5). -P. 281-288. - DOI: 10.1016/S0143-8166(97)00116-4
  • Pavelyev, V.S. Formation of diffractive microrelief on diamond film surface/V.S. Pavelyev, S.A. Borodin, N.L. Kazanskiy, G.F. Kostyuk, A.V. Volkov. -Optics & Laser Technology. -2007. -Vol. 39(6). -P. 1234-1238. -DOI: 10.1016/j.optlastec.2006.08.004.
  • Kazanskiy, N.L. Research & education center of diffractive optics/N.L. Kazanskiy//Proceedings of SPIE. -2012. -Vol. 8410. -84100R. - DOI: 10.1117/12.923233
  • The theory of laser materials processing: heat and mass transfer in modern technology/Ed. by J.M. Dowden. -Bristol, UK: Canopus Academic Publishing Limited, 2009. -ISBN: 978-1-4020-9339-5.
  • Yilbas, B.S. Laser heating applications: analytical modeling/B.S. Yilbas//Waltham, MA: Elsevier, 2012. -ISBN: 978-0-12-415782-8.
  • Mackwood, A.P. Thermal modelling of laser welding and related processes: a literature review/A.P. Mackwood, R.C. Crafer//Optics & Laser Technology. -2005. -Vol. 37(2). -P. 99-115. - DOI: 10.1016/j.optlastec.2004.02.017
  • Van Elsen, M. Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing/M. Van Elsen, M. Baelmans, P. Mercelis, J.-P. Kruth//International Journal of Heat and Mass Transfer. -2007. -Vol. 50(23-24). -P. 4872-4882. -DOI: 10.1016/j.ijheatmasstransfer.2007.02.044.
  • Otto, A. Towards a universal numerical simulation model for laser material processing/A. Otto, M. Schmidt//Physics Procedia. -2010. -Vol. 5(A). -P. 35-46. - DOI: 10.1016/j.phpro.2010.08.120
  • Murzin, S.P. Optimization of the temperature field at the laser treatment of materials with using the focusators of radiation/S.P. Murzin//Computer Optics. -2002. -Vol. 22. -P. 96-99. -.
  • Tikhonov, A.N. Solutions of ill-posed problems. Scripta Series in Mathematics/A.N. Tikhonov, V.Y. Arsenin. -New York: John Wiley & Sons, 1977. -ISBN: 978-0-470-99124-4.
  • Tikhonov, A.N. Numerical methods for the solution of ill-posed problems/A.N. Tikhonov, A.V. Goncharsky, V.V. Stepanov, A.G. Yagola. -Dordrecht, Netherlands: Springer Science+Business Media Dordrecht, 1995. -ISBN: 978-0-7923-3583-2. - DOI: 10.1007/978-94-015-8480-7
  • Cole, K.D. Heat conduction using Green's functions/K.D. Cole, Beck JV, Haji-Sheikh A, Litkouhi B. -2nd ed. -Boca Raton: CRC Press Taylor & Francis, 2010. -ISBN: 978-1-439-81354-6.
  • Hahn, D.W. Heat Conduction/D.W. Hahn, M.N. Özişik. -3rd ed. -Hoboken, NJ: John Wiley & Sons, 2012. -ISBN: 978-0-470-90293-6. - DOI: 10.1002/9781118411285.ch1
  • Kazanskiy, N.L. Formation of the required energy action at the laser treatment of materials with using radiation focusators/N.L. Kazanskiy, S.P. Murzin, S.Yu. Klochkov//Computer Optics. -2005. -Vol. 28. -P. 89-93. -.
  • Murzin, S.P. Formation of nanoporous structures in metallic materials by pulse-periodic laser treatment/S.P. Murzin//Optics & Laser Technology. -2015. -Vol. 72. -P. 48-52. - DOI: 10.1016/j.optlastec.2015.03.022
  • Murzin, S.P. Local laser annealing for aluminium alloy parts/S.P. Murzin//Lasers in Engineering. -2016. -Vol. 33(1-3). -P. 67-76.
  • Murzin, S.P. Formation of structures in materials by laser treatment to enhance the performance characteristics of aircraft engine parts/S.P. Murzin//Computer Optics. -2016. -Vol. 40(3). -P. 353-359. - DOI: 10.18287/2412-6179-2016-40-3-353-359
  • Murzin, S.P. Microstructuring the surface of silicon carbide ceramic by laser action for reducing friction losses in rolling bearings/S.P. Murzin, V.B. Balyakin//Optics & Laser Technology. -2017. -Vol. 88. -P. 96-98. - DOI: 10.1016/j.optlastec.2016.09.007
Еще
Статья научная