Алгоритм определения групп крови по изображениям серологических планшетов
Автор: Корчагин С.А., Зайченкова Е.Е., Шарапов Д.А., Ершов Е.И., Буторин Ю.В., Венгеров Ю.Ю.
Журнал: Компьютерная оптика @computer-optics
Рубрика: Обработка изображений, распознавание образов
Статья в выпуске: 6 т.47, 2023 года.
Бесплатный доступ
В работе рассматривается алгоритм для автоматизации системы медицинской экспресс-диагностики, предназначенной для определения группы крови путем анализа реакции агглютинации (склеивания эритроцитов). После забора крови и заполнения серологического планшета лаборанту достаточно разместить его в специальном сканере для последующего автоматического определения группы крови. Оцифровка данных и помощь лаборанту в распознавании планшетов позволяет решить сразу две критически важные задачи: хранение результатов анализа и контроль человеческого фактора. Предлагаемый алгоритм распознавания позволяет точно определить границы лунок и оценить степень агглютинации посредством легковесной свёрточной нейронной сети. Был собран уникальный набор данных с независимой оценкой степени агглютинации медицинскими экспертами. Наивысшая достигнутая точность оценки степени агглютинации на собранном наборе данных из 3231 изображения лунок оказалась сопоставима с оценкой среднего эксперта и составила 98,2 %.
Агглютинация, группа крови, классификация, преобразование хафа, глубокое обучение
Короткий адрес: https://sciup.org/140303285
IDR: 140303285 | DOI: 10.18287/2412-6179-CO-1339
Список литературы Алгоритм определения групп крови по изображениям серологических планшетов
- Harvey W. On the motion of the heart and blood in animals: A new edition of William Harvey's Exercitatio anatomica de motu cordis et sanguinis in animalibus. Benton: Resource Publications; 2016. ISBN: 1-4982-3508-5.
- Landsteiner K. Über Agglutinationserscheinungen normalen menschlichen Blutes. 1901 [Agglutination phenomena of normal human blood]. Wiener Klinische Wochenschrift; 2001: 768-769.
- Piletsky SS, Rabinowicz S, Yang Z, Zagar C, Piletska EV, Guerreiro A, Piletsky SA. Development of molecularly imprinted polymers specific for blood antigens for application in antibody-free blood typing. ChemComm 2017; 11: 1793-1796. DOI: 10.1039/c6cc08716g.
- Houngkamhang N, Vongsakulyanon A, Peungthum P, Sudprasert K, Kitpoka P, Kunakorn M, Srikhirin T. ABO blood-typing using an antibody array technique based on surface plasmon resonance imaging. Sensors 2013; 13(9): 11913-11922. DOI: 10.3390/s130911913.
- Bouix O, Ferrera V, Delamaire M, Redersdorff JC, Roubinet F. Erythrocyte-magnetized technology: an original and innovative method for blood group serology. Transfusion 2008; 48(9): 1878-1885. DOI: 10.1111/j.1537-2995.2008.01790.x.
- Ching E. Solid phase red cell adherence assay: A tubeless method for pretransfusion testing and other applications in transfusion science. Transfus Apher Sci 2012; 46(3): 287291. DOI: 10.1016/j.transci.2012.03.018.
- Krishnan NS, Fleetwood P, Higgins RM, Hathaway M, Zehnder D, Mitchell D, Briggs D. Application of flow cytometry to monitor antibody levels in ABO incompatible kidney transplantation. Transplantation 2008; 86(3): 474477. DOI: 10.1097/01.tp.0000332337.86453.42.
- Gorakshakar A, Gogri H, Ghosh K. Evolution of technology for molecular genotyping in blood group systems. Indian J Med Res 2017; 146(3): 305. DOI: 10.4103/ijmr.IJMR_914_16.
- Malomgre W, Neumeister B. Recent and future trends in blood group typing. Anal Bioanal Chem 2009; 393(5): 1443-1451. DOI: 10.1007/s00216-008-2411-3.
- Lapierre Y, Rigal D, Adam J, Josef D, Meyer F, Greber S, Drot C. The gel test: a new way to detect red cell antigen-antibody reactions. Transfusion 1990; 30(2): 109-113. DOI: 10.1046/j.1537-2995.1990.30290162894.x.
- Noiphung J, Talalak K, Hongwarittorrn I, Pupinyo N, Thira-bowonkitphithan P, Laiwattanapaisal W. A novel paper-based assay for the simultaneous determination of Rh typing and forward and reverse ABO blood groups. Biosens Bioelectron 2015; 67: 485-489. DOI: 10.1016/j.bios.2014.09.011.
- Uno S, Tanaka T, Ashiba H, Fujimaki M, Tanaka M, Hatta Y, Makishima M. Sensitive typing of reverse ABO blood groups with a waveguide-mode sensor. J Biosci Bioeng 2018; 126(1): 131-137. DOI: 10.1016/j.jbiosc.2018.01.019.
- Heucke UW, Cobet U. Blood group typing by ultrasound backscattering-Quantitative measurements of agglutinates and their shear-dependent behavior. Instrum Sci Technol 2000; 28(4): 311-321. DOI: 10.1081/ci-100100980.
- Doubrovski VA, Dolmashkin AA. Human blood group typing based on digital photographs of RBC agglutination process. Opt Spectrosc 2010; 109(2): 263-267. DOI: 10.1134/s0030400x10080187.
- Sturgeon P. Automation: its introduction to the field of blood group serology. Immunohematology Journal of Blood Group Serology and Education 2001; 17(4): 100105. DOI: 10.21307/immunohematology-2019-561.
- Lifshitz MS, De Cresce RP. The Olympus PK 7100 automated pretransfusion blood testing system. Lab Med 1987; 18(3): 182-183. DOI: 10.1093/labmed/18.3.182.
- Novaretti MCZ, Navarro SP, Dorlhiac-Liacer PE, Chamone DDAF. K phenotyping using a PK-7200 automated analyzer. Immunohematology 1998; 14(1): 2225. DOI: 10.21307/immunohematology-2019-649.
- Dada A, Beck D, Schmitz G. Automation and data processing in blood banking using the Ortho AutoVue® Innova System. Transfus Med Hemother 2007; 34(5): 341346. DOI: 10.1159/000106558.
- Wittmann G, Frank J, Schramm W, Spannagl M. Automation and data processing with the Immucor Galileo® system in a university blood bank. Transfus Med Hemother 2007; 34(5): 347-352. DOI: 10.1159/000107936.
- Shin SY, Kwon KC, Koo SH, Park JW, Ko CS, Song JH, Sung JY. Evaluation of two automated instruments for pre-transfusion testing: AutoVue Innova and Techno TwinStation. The Korean Journal of Laboratory Medicine 2008; 28(3): 214-420. DOI: 10.3343/kjlm.2008.28.3.214.
- Narayanan S, Galloway L, Nonoyama A, Leparc GF, Garcia-Rubio LH, Potter RL. UV-visible spectrophotometric approach to blood typing II: Phenotyping of subtype A2 and weak D and whole blood analysis. Transfusion 2002; 42(5): 619-626. DOI: 10.1046/j.1537-2995.2002.00090.x.
- Ramasubramanian MK, Alexander SP. An integrated fiberoptic-microfluidic device for agglutination detection and blood typing. Biomed Microdevices 2009; 11(1): 217229. DOI: 10.1007/s10544-008-9227-y.
- Sheng N, Liu L, Liu H. Quantitative determination of agglutination based on the automatic hematology analyzer and the clinical significance of the erythrocyte-specific antibody. Clin Chim Acta 2020; 510: 21-25. DOI: 10.1016/j.cca.2020.06.042.
- Ferraz A. Automatic system for determination of blood types using image processing techniques. 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG) 2013: 1-6. DOI: 10.1109/enbeng.2013.6518441.
- HasanTalukder M, Reza M, Begum M, Islam R, Hasan M. Improvement of accuracy of human blood groups determination using image processing techniques. Int J Adv Res Comput Commun Eng 2015; 4(10): 411-412. DOI: 10.17148/ijarcce.2015.41090.
- Dong Y, Fu W, Zhou Z, Chen N, Liu M, Chen S. ABO blood group detection based on image processing technology. 2017 2nd Int Conf on Image, Vision and Computing (ICIVC) 2017: 655-659. DOI: 10.1109/icivc.2017.7984637.
- Rahman S, Rahman A, Khan FA, Shahjahan SB, Nahar K. Blood group detection using image processing techniques. Doctoral dissertation. Bangladesh: BRAC University; 2017.
- Sahastrabuddhe AP, Ajij SD. Blood group detection and RBC, WBC counting: an image processing approach. Int J Comput Sci Eng 2016; 5(10): 18635-18639. DOI: 10.18535/IJECS/V5I10.49.
- Yamin A, Imran F, Akbar U, Tanvir SH. Image processing based detection & classification of blood group using color images. 2017 Int Conf on Communication, Computing and Digital Systems (C-CODE) 2017: 293-298. DOI: 10.1109/c-code.2017.7918945.
- Atici H, Koçer HE, Kader S. Determination of blood group by image processing using digital images. Bilecik Çeyh Edebali Universitesi Fen Bilimleri Dergisi 2020; 7(2): 649659. DOI: 10.35193/bseufbd.646847.
- Anuradha T. Human blood type classification by ROI based pixel segmentation and neural network. Des Eng 2021; 23(8): 9828-9836. DOI: 10.26438/ijcse/v7i7.230234.
- Fathima SMN. Classification of blood types by microscope color images. Int J Mach Learn Comput 2013; 3(4): 376. DOI: 10.7763/ijmlc.2013.v3.342.
- Rathod A, Pathan A. Determination and classification of human blood types using SIFT transform and SVM classifier. Int J Adv Res Electr Electron Instrum Eng 2016; 5: 8467-8473. DOI: 10.15662/IJAREEIE.2016.0511031.
- Ershov EI, Terekhin AP, Nikolaev DP. Generalization of the fast hough transform for three-dimensional images. J Commun Technol Electron 2018; 63(6): 626-636. DOI: 10.1134/s1064226918060074.
- Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986; 6: 679-698. DOI: 10.1016/b978-0-08-051581-6.50024-6.
- Fisher R, Perkins S, Walker A, Wolfart E. Hypermedia image processing reference. Hoboken: John Wiley & Sons Ltd; 1996: 118-130. ISBN: 0-4719-6243-0.
- Nixon M, Aguado A. Feature extraction and image processing for computer vision. Amsterdam: Elsevier Ltd; 2019. ISBN: 0-1281-4976-0.
- Bradski G, Kaehler A. Learning OpenCV: Computer vision with the OpenCV library. Sebastopol: O'Reilly Media Inc; 2008. ISBN: 0-5965-1613-4.
- Figueira JP. Fast discrete Frechet distance. 2020. Source: https://towardsdatascience.com/fast-discrete-fr%C3%A9chet-distance-d6b422a8fb77.
- Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv Preprint. 2014. Source: https://arxiv.org/abs/1412.6980.