Alleviation of seawater stress on tomato by foliar application of aspartic acid and glutathione

Автор: Akladious Samia Ageeb, Abbas Salwa Mohamed

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.9, 2013 года.

Бесплатный доступ

A pot experiment was carried out in the botanical garden of Faculty of Education, Ain Shams University, with the aim of studying the effect of salinity levels (4, 8 and 16% of diluted seawater) and foliar application of aspartic acid and/or glutathione on the growth and chemical constituents of tomatoes (lycopersicon esculentum Mill) plants. The most important results can be summarized as: 1). Treatments of high salinity levels reduced all growth parameters and chemical constituents of plants. 2) Both aspartic acid and glutathione significantly increased plant growth, the contents of anthocyanin, α-tocopherol, ascorbic acid and enzymatic activities. In addition, the content of endogenous amino acids was increased which in turn led to positive changes in the picture of protein electrophoresis, theses changes were accompanied by appearance and disappearance of some protein bands and caused obvious changes in the anatomical features of the stems. 3) The effect of aspartic acid was superior to that of glutathione on increasing plant growth and chemical constituents. 4) Under low saline conditions, the maximum plant growth for all the recorded growth parameters was obtained from plants treated with aspartic acid and grown under 8% of seawater, followed by 4%. However, glutathione had inhibitor effect on plant growth and chemical constituents of plants grown at 16% seawater. The data revealed that the different antioxidants could partially alleviate the harmful effects of salinity stress that reflected on growth and some physiological changes of tomato plant.

Еще

Amino acids, glutathione, lycopersicon esculentum, protiens, salinity

Короткий адрес: https://sciup.org/14323774

IDR: 14323774

Список литературы Alleviation of seawater stress on tomato by foliar application of aspartic acid and glutathione

  • Abo Sedera, F.A., Amany, A.L., Abd El-Latif, A.A., Bader, A. and Rezk, S.M. (2010) Effect of NPK mineral fertilizer levels and foliar application with humic and amino acids on yield and quality of strawberry. Egyp. J. Appl. Sci., 25, 154-169.
  • Ali, Z.A. (2001) Ascorbic acid induced anatomical changes in the leaves and stems of tomato plants. Bull. National Res. Centre Egyp., 26(3), 371-382.
  • Apte, S.K. and Bhagwat, A.A. (1998) Salinity-stress-induced proteins in two nitrogen-fixating Anabaena strains deferentially tolerant to salt. J. Bacteriol., 171, 909-15.
  • Azevedo, A.D., Prisco, J.T., Filho, J.E., Lacerda, C.F., Silva, J.V., Costa, P.H.A. and Filho, E.G. (2004) Effect of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz. J. Plant Physiol., 16, 1677-1590.
  • Blokhina, O., Virolainen, E. and Fagerstedt, K.V. (2003) Antioxidants, oxidative damage and oxygen deprivation stress. A review Annales Botany 91, 179-194.
  • Boyer, J.S. (2001) Growth-induced water potentials originate from wall yielding during growth. J. Exp. Bot., 52, 1483-1488.
  • Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principal of protein -dye binding. Anal Biochem. 72, 248-254.
  • Chandlee, J.M. and Scandalios, J.G. (1984) Analysis of variants affecting the catalase development program in maize scutellum. Theor. Appl. Gen., 69, 71-77.
  • Dash, M. and Panda, S.K. (2001) Salt stress induced changes in growth and enzyme activities in germinating Phaselous mungo seeds. Plant Biol., 44, 587-589.
  • El-Bassiouny, H.M. and Bakheta, M.A. (2005) Effect of salt stress on relative water content, lipid peroxidation, polyamines, amino acids and ethylene of two wheat cultivars. Inter J. Agric. and Biol., 7, 363-365.
  • El-Bassiouny, H.M., Mostafa, H.A., El-Khawas, S.A., Hassanein, R.A., Khalil, S.I. and Abd El-Monem, A.A. (2008) Physiological responses of wheat plant to foliar treatments with arginine or putrescine. Aus. J. Basic and Appl. Sci., 2(4), 1390-1403.
  • Gamal El-Din, K.M. and Abd El-Wahed, M.S. (2005) Effect of some amino acids on growth and essential oil content of chamomile plant. Inter J. Agric. Biol., 7, 376-380.
  • Garcia, G.D., Ferreira, P.A., Miranda, G.V., Neves, J.C., Moraes, W.B. and Santos, D.B. (2007) Leaf contents of cationic macronutrients and their relationships with sodium in maize plants under saline stress. IDESIA 25,93-106.
  • Gehrke, C.W., Wall, L.L., Absheer, J.S., Kasier, F.E. and Zumwalt, W. (1985) Sample preparation for chromatography of amino acids: acid hydrolysis of proteins. J. Assoc. of Official Anal. Chem., 68-81.
  • Hassanein, R.A., Khalil, S.I., El-Bassiouny, H.M., Mostafa, H.A., El-Khawas, S.A. and Abd El-Monem, A.A. (2008) Protective role of exogenous arginine or putrescine treatments on heat shocked wheat plant. 1st International Conference on Biological and Environmental Sciences, 13-16 March, Hurghada, Egypt.
  • Hemmat, K. (2007) Role of glutathione and polyadenylic acid on the oxidative defense systems of two different cultivars of canola seedlings grown under saline condition. Aust J of basic and Appl Sci., 1(3), 323-334.
  • Hernandez, J., Jimenez, A., Mullineaux, P. and Sevilla, F.N. (2000) Tolerance of pea plants (Pisum sativum) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ., 23, 853-862.
  • Jui-Hung, C., Han-Wei, J., En-Jung, H., Hsing-Yu, C., Ching-Te, C., Hsu-Liang, H. and Tsan-Piao, L. (2012) Drought and salt stress tolerance of an arabidopsis glutathione S-Transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol., 158, 340-351.
  • Koyro, H.W. (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L-). Environ. Exp. Bot., 56, 136-146.
  • Krizek, D.T., Kramer, G.F., Upadhyaya, A. and Mirecki, R.M. (1993) UV-B Response of cucumber seedling grown under metal halid and high pressure sodium/deluxe lamps. Plant physiol., 88, 350-358.
  • Kumar, K.B. and Khan, P.A. (1982) Peroxidase and polyphenol oxidase in excised ragi (Eleusine coracana cv. PR 202) leaves during senescence. Ind. J. Exp. Bot., 20, 412-416.
  • Laememli, U.K. (1970) Cleavage of structure proteins during the assembly of the head of bacteriophageT4. Nature 227, 680-685.
  • Mitsuya, S., Takeoka, Y. and Miyake, H. (2000) Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. Plant Physiol., 157, 661-667.
  • Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Sci., 7, 405-410.
  • Mukherjee, S.P. and Choudhuri, M.A. (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Plant Physiol., 58, 166-170.
  • Munns, R. and Termaat, A. (1986) Whole-plant responses to salinity. Aus. J Plant Physiol. 13, 143-160.
  • Nassar, M.A. and El-Sahhar, K.F. (1998) Botanical preparations and Microscopy (Microteqnique) Academic Bookshop, Dokki, Giza, Egypt., pp, 219
  • Philip, B., Bernard, L. and William, H. (1954) Vitamins and Deficiency Diseases, In, Practical Physiological Chemistry, McGraw-Hill company, INC. New York, Toronto, London, 1272-1274.
  • Pimmongkol, A., Terapongtanakhon, S. and Udonsirichakhon, K. (2002) Anatomy of a salt -and non-salt-tolerant rice treated with NaCl. In: 28th Congr. Science and Technology of Thailand, Bangkok, Thailand.
  • Rawia, A.E., Lobna, S.T. and Soad, M.I. (2011) Alleviation of Adverse Effects of Salinity on Growth, and Chemical Constituents of Marigold Plants by Using Glutathione and Ascorbate. J. Appl Sci Res., 7(5), 714-721.
  • Sairam, R.K., Srivastava, G.C., Agarwal, S.A. and Meena, R.C. (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Plant Biol., 49, 85-91.
  • Vaidyanathan, H., Sivakumar, P., Chakrabarsty, R., and Thomas, G. (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties. Plant Sci., 165, 1411-1418.
  • Wahba, H., Mohamed, S.M., Attoa, G.E., and A.A. Farahat (2002). Response of Antholyza aethiopica to foliar spray with some amino acids and mineral nutrition with sulfur. Annales Agric. Sci., 47, 929-944.
Еще
Статья научная