An adaptive image in painting method based on the modified Mumford-Shah model and multiscale parameter estimation

Автор: Thanh Dang Ngoc Hoang, Surya Prasath V. B., Son Nguyen Van, Hieu Le Minh

Журнал: Компьютерная оптика @computer-optics

Рубрика: Обработка изображений, распознавание образов

Статья в выпуске: 2 т.43, 2019 года.

Бесплатный доступ

Image inpainting is a process of filling missing and damaged parts of image. By using the Mumford-Shah image model, the image inpainting can be formulated as a constrained optimization problem. The Mumford-Shah model is a famous and effective model to solve the image inpainting problem. In this paper, we propose an adaptive image inpainting method based on multiscale parameter estimation for the modified Mumford-Shah model. In the experiments, we will handle the comparison with other similar inpainting methods to prove that the combination of classic model such the modified Mumford-Shah model and the multiscale parameter estimation is an effective method to solve the inpainting problem.

Еще

Image inpainting, mumford-shah model, modified mumford-shah model, regularization, euler-lagrange equation, inverse gradient, multiscale

Короткий адрес: https://sciup.org/140243286

IDR: 140243286

Список литературы An adaptive image in painting method based on the modified Mumford-Shah model and multiscale parameter estimation

  • Chan, T. Image processing and analysis: variational, PDE, wavelet, and stochastic methods/T. Chan, J. Shen. -Philadelphia: Society for Industrial and Applied Mathematics Philadelphia, 2005.
  • Grossauer, H. Digital image inpainting: Completion of images with missing data regions/H. Grossauer. -Innsbruck: Simon & Schuster, 2008.
  • Esedoglu, S. Digital inpainting based on the Mumford-Shah-Euler image model/S. Esedoglu, J. Shen//European Journal of Applied Mathematics. -2002. -Vol. 13, Issue 4. -P. 353-370.
  • Tauber, Z. Review and preview: Disocclusion by inpainting for image-based rendering/Z. Tauber, Z.N. Li, M.S. Drew//IEEE Transactions on Systems, Man, and Cybernetics. -2007. -Vol. 37, Issue 4. -P. 527-540.
  • Zayed, A. Advances in Shannon's sampling theory/A. Zayed. -CRC Press, 2018.
  • Prasath, V.B.S. Image restoration with total variation and iterative regularization parameter estimation/V.B.S. Prasath, D.N.H. Thanh, N.X. Cuong, N.H. Hai//ACM The Eighth International Symposium on Information and Communication Technology (SoICT 2017). -2017. -P. 378-384.
  • Thanh, D.N.H. A method of total variation to remove the mixed Poisson-Gaussian noise/D.N.H. Thanh, S. Dvoenko//Pattern Recognition and Image Analysis. -2016. -Vol. 26, Issue 2. -P. 285-293.
  • Thanh, D.N.H. Image noise removal based on total variation/D.N.H. Thanh, S. Dvoenko//Computer Optics. -2015. -Vol. 39(4). -P. 564-571. -
  • DOI: 10.18287/0134-2452-2015-39-4-564-571
  • Rogers, C.A. Hausdorff measures/C.A. Rogers. -Cambridge: Cambridge University Press, 1998.
  • Torben, P. Ambrosio-Tortorelli segmentation of stochastic images: Model extensions, theoretical investigations and numerical methods/P. Torben, M.K. Robert, P. Tobias//International Journal of Computer Vision. -2013. -Vol. 103, Issue 2. -P. 190-212.
  • Ambrosio, L. Approximation of functional depending on jumps by elliptic functional via gamma convergence/L. Ambrosio, M. Tortorelli//Communications on Pure and Applied Mathematics. -1990. -Vol. 43, Issue 8. -P. 999-1036.
  • Prasath, V.B.S. Quantum noise removal in X-Ray images with adaptive total variation regularization/V.B.S. Prasath//Informatica. -2017. -Vol. 28, Issue 3. -P. 505-515.
  • Shen, J. Mathematical models for local nontexture inpaintings/J. Shen, T.F. Chan//SIAM Journal on Applied Mathematics. -2002. -Vol. 62, Issue 3. -P. 1019-1043.
  • Schönlieb, C.B. Partial differential equation methods for image inpainting/C.B. Schönlieb. -Cambridge: Cambridge University Press, 2015.
  • Dahl, J. Algorithms and software for total variation image reconstruction via first-order methods/J. Dahl, P.C. Hansen, S.H. Jensen, T.L. Jensen//Numer Algo. -2010. -Vol. 52. -P. 67-91.
  • Rudin, L.I. Nonlinear total variation based noise removal algorithms/L.I. Rudin, S. Osher, E. Fatemi//Physica D, vol. 60, p. 259-268, 1990.
  • Mumford, D. Optimal approximations by piecewise smooth functions and associated variational problems/D. Mumford, J. Shah//Communications on Pure and Applied Mathematics. -1989. -Vol. 42, Issue 5. -P. 577-685.
  • Matus, P.P. Difference schemes on nonuniform grids for the two-dimensional convection-diffusion equation/P.P. Matus, L.M. Hieu//Computational Mathematics and Mathematical Physics. -2017. -Vol. 57, Issue 12. -P. 1994-2004.
  • Prasath, V.B.S. Multiscale Tikhonov-total variation image restoration using spatially varying edge coherence exponent/V.B.S. Prasath, D. Vorotnikov, R. Pelapur, S. Jose, G. Seetharaman, K. Palaniappan//IEEE Transactions on Image Processing. -2015. -Vol. 24, Issue 12. -P. 5220-5235.
  • Thanh, D.N.H. A review on CT and X-ray images denoising methods/D.N.H. Thanh, V.B.S. Prasath, L.M. Hieu//Informatica. -2019. -Vol. 43. -(forthcoming).
Еще
Статья научная