An insight on a-crystallin interactions with various proteins in systemic disorders

Автор: Chakraborty A., Nandy S., Saha S., De P.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.19, 2023 года.

Бесплатный доступ

ΑA- and αB- crystallins are the two principal components of the α-crystallin family of heat shock proteins which exhibit chaperone activity as well as cyto-protective function. It is well known that α-crystallin binds to misfolded or unfolded proteins and prevents their aggregation. The interactions of various proteins, such as methionine sulfoxide reductase A (MsrA), galectin-related interfiber protein (GRIFIN), histones and creatine kinase enzymes with α- crystallin may be deduced from their changes in abundance in the cell. The alterations in the abundance of histone proteins with a loss of normal chaperone function of α-crystallin suggest their importance in the biochemical mechanisms of hereditary cataract formation. Various proteomic and mass spectrometric methods have been utilised to elucidate the relationships between ɑ-crystallin chaperone function, substrate binding and retinal disorders such as hereditary cataract, retinal neurodegenerative diseases and other systemic disorders and inflammation. A special emphasis on such interactions and in vivo protective roles of α-crystallin, under normal and pathological conditions, may highlight the potential of crystallins as therapeutic agents.

Еще

Ɑ-crystallin, misfolded protein aggregation, protein interactions, chaperone, systemic disorder

Короткий адрес: https://sciup.org/143180572

IDR: 143180572

Список литературы An insight on a-crystallin interactions with various proteins in systemic disorders

  • Andley, U. P., Hamilton, P. D., & Ravi, N. (2008). Mechanism of insolubilization by a single-point mutation in aA-crystallin linked with hereditary human cataracts. Biochemistry, 47(36), 9697-9706.
  • Andley, U. P., Malone, J. P., & Townsend, R. R. (2014). In vivo substrates of the lens molecular chaperones aA-crystallin and aB-crystallin. PloS one, 9(4), e95507.
  • Andley, U. P., Naumann, B. N., Hamilton, P. D., & lenses. BMC research notes, 13(1), 1-6.
  • Andley, U. P., Tycksen, E., McGlasson-Naumann, B. N., & Hamilton, P. D. (2018). Probing the changes in gene expression due to a-crystallin mutations in mouse models of hereditary human cataract. PloS one, 13(1), e0190817.
  • Banerjee, P. R., Pande, A., Patrosz, J., Thurston, G. M., & Pande, J. (2011). Cataract-associated mutant E107A of human yD-crystallin shows increased attraction to a-crystallin and enhanced light scattering. Proceedings of the National Academy of Sciences, 108(2), 574-579.
  • Barton, K. A., Hsu, C. D., & Petrash, J. M. (2009). Interactions between small heat shock protein a-crystallin and galectin-related interfiber protein (GRIFIN) in the ocular lens. Biochemistry, 48(18), 3956-3966.
  • Bassnett, S., Missey, H., & Vucemilo, I. (1999). Molecular architecture of the lens fiber cell basal membrane complex. Journal of cell science, 112(13), 2155-2165.
  • Biswas, A., & Das, K. P. (2004). Role of ATP on the interaction of a-crystallin with its substrates and its implications for the molecular chaperone function. Journal of Biological Chemistry, 279(41), 42648-42657.
  • Bova, M. P., Yaron O, Huang Q, Ding L, Haley DA, Stewart PL, Horwitz J. (1999). Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. ProcNatlAcadSci USA, 96, 6137-6142.
  • Boyle, D. L., Takemoto, L., Brady, J. P., & Wawrousek, E. F. (2003). Morphological characterization of the AlphaA-and AlphaB-crystallin double knockout mouse lens. BMC ophthalmology, 3(1), 1-11.
  • Brennan, L. A., Lee, W., & Kantorow, M. (2010). TXNL6 is a novel oxidative stress-induced reducing system for methionine sulfoxide reductase a repair of a-crystallin and cytochrome C in the eye lens. PloS one, 5(11), e15421.
  • Bozeman, S. L. (2020). Changes in relative histone abundance and heterochromatin in aA-crystallin and aB-crystallin knock-in mutant mouse
  • Brennan, L. A., Lee, W., Giblin, F. J., David, L. L., & Kantorow, M. (2009). Methionine sulfoxide reductase A (MsrA) restores a-crystallin chaperone activity lost upon methionine oxidation. BiochimicaetBiophysicaActa (BBA)-General Subjects, 1790(12), 1665-1672.
  • Budnar, P., Tangirala, R., Bakthisaran, R., & Rao, C. (2022). Protein aggregation and cataract: Role of age-related modifications and mutations in a-crystallins. Biochemistry (Moscow), 87(3), 225-241.
  • Burgess, R. J., & Zhang, Z. (2013). Histone chaperones in nucleosome assembly and human disease. Nature structural & molecular biology, 20(1), 14-22.
  • Caporossi, D., Parisi, A., Fantini, C., Grazioli, E., Cerulli, C., &Dimauro, I. (2021). AlphaB-crystallin and breast cancer: role and possible therapeutic strategies. Cell stress & chaperones, 26(1), 19-28.
  • Chang, Y. Y., Hsieh, M. H., Huang, Y. C., Chen, C. J., & Lee, M. T. (2022). Conformational Changes of a-Crystallin Proteins Induced by Heat Stress. International Journal of Molecular Sciences, 23(16), 9347.
  • (2015). Effect of crowding on several stages of protein aggregation in test systems in the presence of a-crystallin. International journal of biological macromolecules, 80, 358-365.
  • Release and activity of histone in diseases. Cell death & disease, 5(8), e1370-e1370.
  • Chis, R., Sharma, P., Bousette, N., Miyake, T., Wilson, A., Backx, P. H., &Gramolini, A. O. (2012). a-Crystallin B prevents apoptosis after H2O2 exposure in mouse neonatal cardiomyocytes. American Journal of Physiology-Heart and Circulatory Physiology, 303(8), H967-H978.
  • Delaye, M., & Tardieu, A. (1983). Short-range order of crystallin proteins accounts for eye lens transparency. Nature, 302(5907), 415-417.
  • Diguet, N., Mallat, Y., Ladouce, R., Clodic, G., Prola, A., Tritsch, E..... & Mericskay, M. (2011). Muscle creatine kinase deficiency triggers both actin depolymerization and desmin disorganization by advanced glycation end products in dilated cardiomyopathy. Journal of Biological Chemistry, 286(40), 35007-35019.
  • Djabali, K., de Nechaud, B., Landon, F., & Portier, M. M. (1997). AlphaB-crystallin interacts with intermediate filaments in response to stress. Journal of cell science, 110(21), 2759-2769.
  • Feser, J., Truong, D., Das, C., Carson, J. J., Kieft, J., Harkness, T., & Tyler, J. K. (2010). Elevated histone expression promotes life span extension. Molecular cell, 39(5), 724-735.
  • Fort, P. E., &Lampi, K. J. (2011). New focus on alpha-crystallins in retinal neurodegenerative diseases. Experimental eye research, 92(2), 98-103.
  • Fosu-Mensah, N. A., Jiang, W., Brancale, A., Cai, J., &Westwell, A. D. (2019). The discovery of purine-based agents targeting triple-negative breast cancer and the aB-crystallin/VEGF protein-protein interaction. Medicinal Chemistry Research, 28(2), 182-202.
  • Frankfater, C., Bozeman, S. L., Hsu, F. F., &Andley, U. P. (2020). Alpha-crystallin mutations alter lens metabolites in mouse models of human cataracts. PloS one, 15(8), e0238081.
  • Guo, H., Yi, J., Wang, F., Lei, T., & Du, H. (2022). Potential application of heat shock proteins as therapeutic targets in Parkinson's disease. Neurochemistry International, 105453. https://doi.org/10.1016/jneuint.2022.105453
  • Hamilton, P. D., & Andley, U. P. (2018). In vitro interactions of histones and a-crystallin. Biochemistry and biophysics reports, 15, 7-12.
  • Hamilton, P. D., Bozeman, S. L., &Andley, U. P. (2020). Creatine kinase/a-crystallin interaction functions in cataract development. Biochemistry and biophysics reports, 22, 100748.
  • Hamilton, P. D., McGlasson, B., & Andley, U. P. (2016). a-Crystallin binding and associations with putative substrates. Investigative Ophthalmology & Visual Science, 57(12), 724-724.
  • Hejtmancik, J. F., Riazuddin, S. A., McGreal, R., Liu, W., Cvekl, A., & Shiels, A. (2015). Lens biology and biochemistry. Progress in molecular biology and translational science, 134, 169-201.
  • Hirabayashi, J., & Kasai, K. I. (1991). Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa beta-galactoside-binding lectin. Journal of Biological Chemistry, 266(35), 23648-23653.
  • Islam, S., Do, M. T., Frank, B. S., Hom, G. L., Wheeler, S., Fujioka, H..... & Monnier, V. M. (2022).
  • Crystallin chaperone mimetic drugs inhibit lens y-crystallin aggregation: Potential role for cataract prevention. Journal of Biological small heat shock protein aB-crystallin negatively regulates cytochrome c-and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. Journal of Biological Chemistry, 276(19), 16059-16063.
  • Kamradt, M. C., Lu, M., Werner, M. E., Kwan, T., Chen, F., Strohecker, A..... & Cryns, V. L. (2005). The small heat shock protein aB-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. Journal of Biological Chemistry, 280(12), 11059-11066.
  • Kannan, R., Santhoshkumar, P., Mooney, B. P., & Sharma, K. K. (2013). The aA66-80 Peptide Interacts with Soluble a-Crystallin and Induces Its Aggregation and Precipitation: A Contribution to Age-Related Cataract Formation. Biochemistry, 52(21), 3638-3650.
  • Khoshaman, K., Ghahramani, M., Shahsavani, M. B., Moosavi-Movahedi, A. A., Kurganov, B. I., & Yousefi, R. (2022). Myopathy-associated G154S mutation causes important changes in the conformational stability, amyloidogenic properties, and chaperone-like activity of human aB-crystallin. Biophysical Chemistry, 282, 106744.
  • Khoshaman, K., Yousefi, R., Tamaddon, A. M., Abolmaali, S. S., Oryan, A., Moosavi-Movahedi, A. A., & Kurganov, B. I. (2017). The impact of different mutations at Arg54 on structure, chaperone-like activity and oligomerization state of human aA-crystallin: The pathomechanism underlying congenital cataract-causing mutations R54L, R54P and R54C. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1865(5), 604-618.
  • Kim, H. Y., & Gladyshev, V. N. (2004). Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Molecular biology of the cell, 15(3), 1055-1064.
  • Kim, H. Y., & Gladyshev, V. N. (2007). Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochemical Journal, 407(3), 321-329.
  • Kim, J. Y., Kim, C. H., Lee, E. Y., & Seo, J. H. (2020). Alpha B-crystallin overexpression protects oligodendrocyte precursor cells against oxidative stress-induced apoptosis through the Akt pathway. Journal of Molecular Neuroscience, 70(5), 751-758.
  • Liao, M., Zhang, J., Wang, G., Wang, L., Liu, J., Ouyang, L., & Liu, B. (2021). Small-molecule drug discovery in triple negative breast cancer: current situation and future directions. Journal of Medicinal Chemistry, 64(5), 2382-2418.
  • Lim, J. C., Suzuki-Kerr, H., Nguyen, T. X., Lim, C. J., & Poulsen, R. C. (2022). Redox Homeostasis in Ocular Tissues: Circadian Regulation of Glutathione in the Lens?. Antioxidants, 11(8), 1516.
  • Kamradt, M. C., Chen, F., & Cryns, V. L. (2001). The D. R. (2010). alphaB-crystallin regulation of CRYAB mutation associated with autosomal dominant posterior polar cataract in a Chinese family. Investigative ophthalmology & visual science, 47(8), 3461-3466.
  • Maki, N., Tsonis, P. A., & Agata, K. (2010). Changes in global histone modifications during dedifferentiation in newt lens regeneration. Molecular vision, 16, 1893.
  • Miller, A. P., O'Neill, S. E., Lampi, K., & Reichow, S. L. (2022). Elongation and expansion mechanism of lens chaperone a-crystallins in deterring light-scattering aggregation. Biophysical Journal, 121(3), 349a.
  • Muchowski, P. J., Hays, L. G., Yates, J. R., & Clark, J. I. (1999). ATP and the core "a-crystallin" domain of the small heat-shock protein aB-crystallin. Journal of Biological Chemistry, 274(42), 30190-30195.
  • Mueller, N. H., Fogueri, U., Pedler, M. G., Montana, K., Petrash, J. M., &Ammar, D. A. (2015). Impact of subunit composition on the uptake of a-crystallin by lens and retina. Plos one, 10(9), e0137659.
  • Nagaraj, R. H., Nahomi, R. B., Mueller, N. H., Raghavan, C. T., Ammar, D. A., & Petrash, J. M. (2016). Therapeutic potential of a-crystallin. Biochimica et Biophysica Acta (BBA)-General Subjects, 1860(1), 252-257.
  • Nakata, K., Crabb, J. W., &Hollyfield, J. G. (2005). Crystallin distribution in Bruch's membrane-choroid complex from AMD and age-matched donor eyes. Experimental eye research, 80(6), 821-826.
  • Nikbakht, M. R., Ashrafi-Kooshk, M. R., Jaafari, M., Ghasemi, M., & Khodarahmi, R. (2014). Does Long-Term Administration of a Beta-Blocker (Timolol) Induce Fibril-Based Cataract Formation In-vivo?. Iranian Journal of Pharmaceutical Research: IJPR, 13(2), 599.
  • Nollen, E. S. M. K. E., & Mata-Cabana, A. (2017) Cellular regulation of amyloid formation in aging and disease. Front NeuroSci; 11:64
  • Ogden, A. T., Nunes, I., Ko, K., Wu, S., Hines, C. S., Wang, A. F..... & Lang, R. A. (1998). GRIFIN, a novel lens-specific protein related to the galectin family. Journal of Biological Chemistry, 273(44), 28889-28896.
  • Palmisano, D. V., Groth-Vasselli, B., Farnsworth, P. N., & Reddy, M. C. (1995). Interaction of ATP and lens alpha crystallin characterized by equilibrium binding studies and intrinsic tryptophan fluorescence spectroscopy. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1246(1), 91-97.
  • Phadte, A. S., Sluzala, Z. B., & Fort, P. E. (2021). Therapeutic potential of a-crystallins in retinal neurodegenerative diseases. Antioxidants, 10(7), 1001.
  • Piri, N., Kwong, J. M., Gu, L., & Caprioli, J. (2016). Heat shock proteins in the retina: focus on HSP70 and alpha crystallins in ganglion cell survival. Progress in retinal and eye research, 52, 22-46.
  • Prokai, L., Zaman, K., Nguyen, V., &Prokai-Tatrai, K. (2020). 17p-Estradiol Delivered in Eye Drops: Evidence of Impact on Protein Networks and Associated Biological Processes in the Rat Retina through Quantitative Proteomics. Pharmaceutics, 12(2), 101.
  • Prokosch, V., Schallenberg, M., & Thanos, S. (2013). Crystallins are regulated biomarkers for monitoring topical therapy of glaucomatous optic neuropathy. PloS one, 8(2), e49730.
  • Qin, H., Ni, Y., Tong, J., Zhao, J., Zhou, X., Cai, W.& Yao, X. (2014). Elevated expression of CRYAB predicts unfavorable prognosis in non-small cell lung cancer. Medical oncology, 31(8), 1-8.
  • Raju, M., Santhoshkumar, P., & Sharma, K. K. (2016). Alpha-crystallin-derived peptides as therapeutic chaperones. Biochimica et Biophysica Acta (BBA)-General Subjects, 1860(1), 246-251.
  • Rao, N. A., Saraswathy, S., Wu, G. S., Katselis, G. S., Wawrousek, E. F., &Bhat, S. (2008). Elevated retina-specific expression of the small heat shock protein, aA-crystallin, is associated with photoreceptor protection in experimental uveitis. Investigative ophthalmology & visual science, 49(3), 1161-1171.
  • Reddy, V. S., & Reddy, G. B. (2022). Emerging therapeutic roles of small heat shock protein-derived mini-chaperones and their delivery strategies. Biochimie. https://doi.org/10.1016/j.biochi.2022.12.004
  • Dementia, gliosis and expression of the small heat shock proteins hsp27 and aB-crystallin in Parkinson's disease. Neuroreport, 10(11), 22732276.
  • Rothbard, J. B., Kurnellas, M. P., Brownell, S., Adams, C. M., Su, L., Axtell, R. C..... & Steinman, L. (2012). Therapeutic effects of systemic administration of chaperone aB-crystallin associated with binding proinflammatory plasma proteins. Journal of Biological Chemistry, 287(13), 9708-9721.
  • Schlattner, U., Tokarska-Schlattner, M., & Wallimann, T. (2006). Mitochondrial creatine kinase in human health and disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1762(2), 164180.
  • Shin, J. H., Kim, S. W., Lim, C. M., Jeong, J. Y., Piao, C. S., & Lee, J. K. (2009). aB-crystallin suppresses oxidative stress-induced astrocyte apoptosis by inhibiting caspase-3 activation. Neuroscience research, 64(4), 355-361.
  • Sreekumar, P. G., Hinton, D. R., &Kannan, R. (2011). Methionine sulfoxide reductase A: Structure, function and role in ocular pathology. World journal of biological chemistry, 2(8), 184-192.
  • Steeg, P. S. (2006). Tumor metastasis: mechanistic insights and clinical challenges. Nature medicine, 12(8), 895-904.
  • Wang, K., & Spector, A. (1996). a-Crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner. European journal of biochemistry, 242(1), 56-66.
  • Waudby, C. A., Knowles, T. P., Devlin, G. L., Skepper, J. N., Ecroyd, H., Carver, J. A. & Meehan, S. (2010). The interaction of aB-crystallin with mature a-synuclein amyloid fibrils inhibits their elongation. Biophysical journal, 98(5), 843-851.
  • Wolf, L., Harrison, W., Huang, J., Xie, Q., Xiao, N., Sun, J.& Cvekl, A. (2013). Histone posttranslational modifications and cell fate determination: lens induction requires the lysine acetyltransferases CBP and p300. Nucleic acids research, 41(22), 10199-10214.
  • Yu, Y., Xu, J., Qiao, Y., Li, J., & Yao, K. (2021). A new heterozygous mutation in the stop codon of CRYAB (p. X176Y) is liable for congenital posterior pole cataract in a Chinese family. Ophthalmic Genetics, 42(2), 139-143.
  • Zhu, W., Qi, X., Ren, S., Jia, C., Song, Z., & Wang, Y. (2012). aA-crystallin in the pathogenesis and intervention of experimental murine corneal neovascularization. Experimental Eye Research, 98, 44-51.
Еще
Статья обзорная