Аналитический обзор методов распределения задач при совместной работе человека и модели ИИ
Автор: Андрей Васильевич Пономарев, Антон Александрович Агафонов
Журнал: Информатика и автоматизация (Труды СПИИРАН).
Рубрика: Искусственный интеллект, инженерия данных и знаний
Статья в выпуске: Том 24 № 1, 2025 года.
Бесплатный доступ
Во многих практических сценариях принятие решений исключительно моделью ИИ оказывается нежелательным или даже невозможным, и использование модели ИИ является лишь частью сложного процесса принятия решений, включающего и эксперта-человека. Тем не менее при создании и обучении моделей ИИ этот факт зачастую упускается – модель обучается для самостоятельного принятия решений, а это не всегда является оптимальным. В статье представлен обзор методов, позволяющих учесть совместную работу ИИ и эксперта-человека в процессе конструирования (в частности, обучения) систем ИИ, что более точно соответствует практическому применению модели, позволяет повысить точность решений, принимаемых системой «человек – модель ИИ», а также явно управлять другими важными параметрами системы (например, нагрузкой на человека). Обзор включает анализ современной литературы по заданной тематике по следующим основным направлениям: 1) сценарии взаимодействия человека и модели ИИ и формальные постановки задачи для повышения эффективности системы «человек – модель ИИ»; 2) методы для обеспечения эффективного функционирования системы «человек – модель ИИ»; 3) способы оценки качества совместной работы человека и модели ИИ. Сделаны выводы относительно достоинств, недостатков и условий применимости методов, выявлены основные проблемы существующих подходов. Обзор может быть полезен широкому кругу исследователей и специалистов, занимающихся применением ИИ для поддержки принятия решений.
Искусственный интеллект, ответственный ИИ, поддержка принятия решений, человеко-машинное взаимодействие, эксперт-человек, распределение задач, совместная работа человека и ИИ, неопределенность модели, нейронные сети, классификатор, обучение с отказом, обучение с делегированием
Короткий адрес: https://sciup.org/14131342
IDR: 14131342 | DOI: 10.15622/ia.24.1.9