Аналитический обзор разработок аэростатических зондов для Венеры

Бесплатный доступ

Рассмотрены проекты аэростатов для экспедиций в атмосфере Венеры, а также публикации по результатам разработки и успешного запуска аэростатов со спускаемых аппаратов «Вега-1» и «Вега-2» в атмосфере Венеры. На основе анализа публикаций проектов предложена классификация схем аэростатов и рассмотрены проектные решения и схемы для поддержания высоты плавания аэростата и её изменения с использованием регулирования плавучести, а также за счёт управления винтовым движителем. Охарактеризованы конструктивные решения ряда проектов аэростатических аппаратов для исследования Венеры. Рассмотрено несколько проектов аэростатов для плавания на малых высотах, а также для несения и запуска с аэростата на высоте свыше 50 км над поверхностью Венеры возвратной ракеты для доставки отобранных образцов на Землю. Приведены проектные характеристики, включая оценки массы, размеров, поддерживаемых высот и длительности плавания предложенных аэростатических аппаратов в атмосфере Венеры. Дана оценка схемных решений в части возможности перемещения в атмосфере Венеры по сложности их осуществления. Охарактеризованы тенденции развития разработок аэростатических аппаратов для Венеры.

Еще

Венера, атмосфера, аэростат, дирижабль, оболочка, баллонет, радиационный нагрев, газонаполнение, спускаемый аппарат

Короткий адрес: https://sciup.org/143183278

IDR: 143183278

Список литературы Аналитический обзор разработок аэростатических зондов для Венеры

  • Moskalenko GM. Mekhanika poleta v atmosfere Venery [Mechanics of flight in Venusian atmosphere]. Moscow: Mashinostroeniye; 1978 (in Russian).
  • Vorontsov VA; Pichkhadze™ KM, editor. Proektirovanie aerostatnykh zondov dlya issledovaniya planet Solnechnoi Sistemy [Designing balloon-borne probes for studying planets in the Solar System]. Moscow: MAI-print publishing house; 2009 (in Russian).
  • Vorontsov VA, Malyshev VV, Pichkhadze KM. Sistemnoe proektirovanie kosmicheskikh desantnykh apparatov [System design of descent vehicles for space]. Moscow: MAI publishing house; 2021 (in Russian).
  • Vorontsov VA, Pichkhadze KM. Metodologicheskie osnovy formirovaniya skhemnykh reshenii sredstv desantirovaniya i dreifa v atmosferakh planet i ikh sputnikov [Methodological foundations for conceptual design of vehicles for descending and drifting in the atmospheres of planets and their satellites]. In: Efanov™ VV, Pichkhadze™ KM, editors. Proektirovanie avtomaticheskikh kosmicheskikh apparatov dlya fundamental’nykh nauchnykh issledovanii [Designing robotic spacecraft for fundamental scientific research]. In 2 volumes. MAI publishing house; 2013. Vol. 1. P. 11–56™(in Russian).
  • Kremnev RS, Karyagin VP, Balyberdin VV, Klevtsov AA. Aerostaty v atmosfere Venery [Aerostatic balloons in Venusian atmosphere]. Kiev: Naukova dumka; 1985 (in Russian).
  • Podgornyi AN, Balyberdin VV, Kremnev RS. Endotermicheskie aerostaty [Endothermic aerostatic balloons]. Kiev: Naukova dumka;1988 (in Russian).
  • Vorontsov VA, Krainov AM, Martynov MB, Pichkhadze KM, Khartov VV. Predlozheniya po rasshireniyu programmy issledovanii Venery s uchetom opyta proektnykh razrabotok NPO im. S.A. Lavochkina [Proposals for expanding the program of Venusian research taking into account the experience of design studies conducted at NPO Lavochkin]. Trudy MAI [MAI Proceedings]. 2012; 52. Available from: https://mai.ru/upload/iblock/2b6/predlozheniya-po-rasshireniyu-programmy-issledovaniy-venerys-uchetom-opyta-proektnykh-razrabotok-npo-im.-s.a.-lavochkina.pdf?ysclid=lulavr58q4950099544 (accessed 05.10.2023) (in Russian).
  • Lemeshevskii SA, Grafodatsky OC, Karchaev KhZh, Vorontsov VA. Spacecraft for Venus contact studies. Heritage and prospects (to the eightieth anniversary of Lavochkin Association and to the fiftieth anniversary of «Venera-4» spacecraft). Vestnik NPO im. S.A. Lavochkina. 2017; 2(36): 52–58. Available from: https://elibrary.ru/ypvcxt (accessed 05.10.2023) (in Russian).
  • Vorontsov V, Lohmatova G, Martynov B, Pichkhadze , Simonov V, Khartov VV, Zasova LV, Zelenyi L, Korablev I. Perspective spacecraft for Venus research. «Venera-D» project. Vestnik NPO im. S.A. Lavochkina. 2010; 4(6): 62–67. Available from: https://elibrary.ru/ypvcxt (accessed 05.10.2023) (in Russian).
  • Vorontsov VA, Deryugin VA, Karyagin VP, Kremnev PS, Kuznetsov VV, Lankin VM, Lichdsadze KM, Rogovskii GN, Terterashvili AV. Metod issledovaniya planety Venera s pomoshch’yu plavayushchikh aerostatnykh stantsii. Matematicheskaya model’ [A method for studying Venus using floating aerostatic stations. A math model]. Kosmicheskie issledovaniya [Cosmic Research]. 1988; 26(3): 430–433 (in Russian).
  • Andreev RA, Altunin VI, Armand NA, Akim EL, Bakit’ko RV, Blamon Zh, Bolo L, Vyshlov™ AS, Gorshenkov YuI, Ivanov PM, Kerzhanovich VV, Kostenko VI, Kogan LR, Kustodiev VD, Linkin VM, Morales Zh, Preston R, Peti Zh, Pogrebenko SV, Puchkov VP, Selivanov AS, Steltsrid Ch, Tarnoruder II, Tikhonov VF, Khildebrand K. Aerostatnyi eksperiment proekta “Vega”. Srednyaya skorost’ vetra v atmosphere Venery po doplerovskim izmereniyam aerostatnykh stantsii [Aerostatic experiments under Vega project Average wind velocity in the Venusian atmosphere from Doppler measurements of aerostatic stations]. Pis’ma v Astronomicheskii zhurnal [Letters to Astronomical Journal]. 1986;™12 (1):™136 (in Russian).
  • Aleksandrov KN, Andreev RA, Armand NA, Bakit’ko RV, Blamon Zh, Polo L, Vorontsov™ VA, Vyshlov AS, Penatov SP, Ingersol Z, Zaitsev AL, Kerzhanovich VV, Lysov™ VP, Mottsulev BP, Pichkhadze KM, Preston R. Peti Zh, Khildebrand K, Yang R. Aerostatnyi eksperiment proekta “Vega”: melkomasshtabnaya turbulentnost’ v srednem oblachnom sloe Venery. Pis’ma v Astronomicheskii zhurnal [Letters to Astronomical Journal]. 1986; 12(1): 46–52 (in Russian).
  • Cathey H.M. Test flights of the NASA ultra-long duration balloon // Advances in Space Research. 2004. 33. Issue 10. P. 1633–1641. URL:Šhttps://doi.org/10.1016/j.asr.2003.07.036 (accessed 05.10.2023).
  • Hall J.L., Fairbrother D., Frederickson T., Kerzhanovich V.V., Said M., Sandy C., Ware J., Willey C., Yavrouian A.H. Prototype design and testing of a Venus long duration, high altitude balloon // Advances in Space Research. 2008. 42. Issue 10. P. 1648–1655. URL: http://dx.doi.org/10.1016/j.asr.2007.03.017 (accessed 05.10.2023).
  • Venera-D: Expanding our horizon of terrestrial planet climate and geology through the comprehensive exploration of Venus: Phase II final report of Venera-D joint science definition team. January 31, 2019.
  • Franzke A.M., Modl C.M., Nesbitt T.J., Regner B., Prewett E. Buoyant Venus descender: design of an atmospheric probe for scientific study of Venus // AIAA Balloon Systems Conf., Williamsburg, VA 2007. AIAA-2007-2634. URL: http://dx.doi.org/10.2514/6.2007-2634 (accessed 05.10.2023).
  • Seager S., Petkowski J.J., Carr C.E., Grinspoon D.H., Ehlmann B.L., Saikia S.J., Agrawal R., Buchanan W.P., Weber M.U., French R., Klupar P., WordenŠ S.P. Venus Life Finder Missions Motivation and Summary // Aerospace. 2022. Vol. 9. P. 385. URL: https://doi.org/10.3390/aerospace9070385 (accessed 05.10.2023).
  • Hall J.L., Cameron J.M., Pauken M.T., Izraelevitz J.S., Domingues M.W., Wehage K.T. Altitude-controlled light gas balloons for Venus and Titan exploration // AIAA Aviation Forum, 17–21 June 2019, US, Dallas, Texas. URL: https://dartslab.jpl.nasa.gov/References/pdf/2019-BalloonTitanVeinus.pdf (accessed 05.10.2023).
  • Cutts J.A, editor. Aerial platforms for the scientific exploration of Venus: summary report by the Venus aerial platforms study team, JPL, California Institute of Technology, 2018, JPL D-10256. URL: http://dx.doi.org/10.13140/RG.2.2.15808.89601 (accessed 05.10.2023).
  • Beauchamp P., GilmoreŠM.S., LynchŠR.J., Sarli B.V., Nicoletti A., Jones A., Ginyard A., Segura M.E. Venus Life Finder Mission Study. A suite of mission concepts to explore Venus to study habitability and to potentially find life. 2021. URL: https://www.researchgate.net/publication/356985876_Venus_Life_Finder_Mission_Study (accessed 05.10.2023).
  • Jones J.A., Heun M.K. Montgolfiere balloon aerobots for planetary atmospheres // International Balloon Technology Conference, 1997. URL: https://www.sci-hub.ru/10.2514/6.1997-1445?ysclid=lumdggq6hf674388489 (accessed 05.10.2023).
  • Dunlap R.M. A steam balloon for the exploration of the atmosphere of the planet Venus // Journal of Appied. Meteorology. 1982. ‰ 21. P. 1772–1774. URL: https://www.jstor.org/stable/26180749 (accessed 05.10.2023).
  • Akiba R., Hinada M., Matsuo H. Feasibility of study of buoyant Venus station placed by inflated balloon entry // Acta Astronautica. 1977. 4. P. 625–639. URL:https://doi.org/10.1016/0094-5765(77)90112-6 (accessed 05.10.2023).
  • Akiba R., Hinada M., Nakajima T. Simulation study of Venus balloon system // 43rd IAF Congress, Washington, 1992. IAF-92-0559.
  • Izutsu N., Yajima N., Honda H., Imamura T. Venus balloons using water vapor // Advances in Space Research. 2004. Vol. 33. Issue 10. P. 1831–1835. URL: https://doi.org/10.1016/j.asr.2003.07.050 (accessed 05.10.2023).
  • Jones J.A. Reversible fluid balloon altitude control. Concepts // AIAA Lighter-than-Air Systems Technology Conference, 1995. AIAA-95-1608. URL: https://hdl.handle.net/2014/30076 (accessed 05.10.2023).
  • Dorrington G.E. Venus atmospheric platform options revisited // Advansed in Space Research. 2010. Vol. 46. Issue 3.Š P. 310–326. URL: https://www.researchgate.net/publication/222371394_Venus_atmospher i c_plat form_opt ions_revi s i ted (accessed 05.10.2023).
  • Cutts J.A., Nock K.T., Jones J.A., Rodriguez G., Balaram J. Planetary exploration by robotic aerovehicles // Autonomous Robots. 1995. V. 2. P. 261–282. URL: https://doi.org/10.1007/BF00710794 (accessed 05.10.2023).
  • Wu J.J., Jones J.A. Performance model for reversible fluid balloons // AIAA Lighter-than-Air Systems Technology Conference, 1995. AIAA-95-1608. P. 15–18. URL: ht tps://hdl.handle.net/2014/30075 (accessed 05.10.2023).
  • Nock K.T., Aaron K.M., Jones J.A. Balloon altitude control experiment (ALICE) project // AIAA Lighter-than-Air Systems Technology Conference, 1995. AIAA-95-1632. URL: ht tps://hdl.handle.net/2014/30077 (accessed 05.10.2023).
  • Jones J.A. Innovative balloon buoyancy techniques for atmospheric exploration // IEEE Aerospace Conference Proceedings. 2000. Vol. 7. P. 397–402. URL: https://doi.org/10.1109/AERO.2000.879305 (accessed 05.10.2023).
  • Colozza A.J. Solar powered flight on Venus: contractor report 2004. NASA. CR—2004-213052. URL: https://ntrs.nasa.gov/api/citations/20040070782/downl oads/20040070782.pdf (accessed05.10.2023).
  • Fujii H.A., Kusagaya T., Watanabe T. Flight performance of Planetary Atmospheric Flight Airship (PLAS) // IPSI Bgd Internet Research Society. 2012. Vol. 3. 1. P. 5–8. URL: http://tar.ipsitransactions.org/2007/January/Paper%2004.pdf (accessed 05.10.2023).
  • Ross F., Lee G., Polidan R., Sokol D., Nichols R., Malmstrom R., Miller J. Lifting Entry and Atmospheric Flight (LEAF) applications at various Solar system bodies // 12th International Planetary Probe Workshop. Cologne. June 15, 2015. Northrop Grumman Aerospace Systems.
  • Griffin K., Sokol D., Lee G., Polidan R. VAMP ¬
  • oncept for a long-lived UAV at Venus // The value of perfomance Northrop Grumman Aerospace Systems. January 24, 2013.
  • Kerzhanovich V.V., Hall J.L., Yavrouian A.H., Cutts J.A. Dual balloon concept for lifting payloads from the surface of Venus // NTRS. URL: https://www.researchgate.net/publication/24335581 (accessed 05.10.2023).
  • Adams M.L., Glaze L.S., Amato M.J., Baker L.C., KarpatiŠ G. Venus Mobile Explorer: final report. 2009. URL: https://archive.org/details/VenusMobileExplorerMissionConceptStudy/mode/2up (acces sed 05.10.2023).
  • Carpenter K., Basinait S., Bilello J., Carroll P., Matousek S., Bayandor J. Venus sample return mission concept development // Conference AIAA SciTech Forum, January 2020. URL: http://dx.doi.org/10.2514/6.2020-0731(accessed 05.10.2023).
  • Yavrouian A., Plett G., Yen S., Cutts J., Baek D. Evalution of materials for Venus Venus aerobot applications // AIAA Summer Conferences. 1999. URL: https://hdl.handle.net/2014/17175 (accessed 05.10.2023).
  • Yavrouian A., Yen S.P.S., Plett G., Weissman N. High temperature materials for Venus balloon envelopes. AIAA-95-1617-CP. URL: https://doi.org/10.2514/6. 1995-1617 (accessed 05.10.2023).
Еще
Статья научная