Аналитическое решение задачи течения в пористой прямоугольной переборке

Автор: Ватин Н.И., Котов Е.В., Хоробров С.В.

Журнал: Строительство уникальных зданий и сооружений @unistroy

Статья в выпуске: 7 (105), 2022 года.

Бесплатный доступ

Объектом исследования является нестационарное безнапорное фильтрационное течение в пористой изотропной среде, область движения которого сверху ограничена свободной поверхностью, на которой давление жидкости постоянно и равно внешнему атмосферному давлению. Такие течения характерны для фильтрации грунтовых вод через гидротехнические сооружения (плотины, водопонижения, дренажи, фундаменты, котлованы при их осушении). Целью исследования является решение задачи о нестационарном гравитационном течении жидкости в скалярной пористой среде с двумерным фильтрационным движением в вертикальной плоскости. Сформулирована предельная задача нестационарной теории фильтрации (Буссинеска) для скалярной пористой среды с использованием безразмерной факторизации, что позволяет решать группы задач для областей со схожими областями определения. Предельная задача Буссинеска сведена к типичной предельной задаче для обыкновенного дифференциального уравнения Крокко. Сформулирована и решена предельная задача Крокко. Получено аналитическое решение предельной задачи для прямоугольного моста. Решение определяет глубину фильтрационного потока за перемычкой. В работе доказано, что предельные задачи нестационарной фильтрации в вертикальной плоскости идентичны предельным задачам стационарной теории пограничного слоя в переменных Мизеса — продольная координата-функция тока.

Еще

Нестационарный фильтрационный поток, предельная задача Буссинеска, редукция, уравнение Крокко, прямоугольная плотина, кривая депрессии

Короткий адрес: https://sciup.org/143182683

IDR: 143182683   |   DOI: 10.4123/CUBS.105.1

Список литературы Аналитическое решение задачи течения в пористой прямоугольной переборке

  • Anakhaev K.N. (2009) A Particular analytical solution of a steady-state flow of a groundwater mound. Water Resources, No. 5, 507-512. https://doi.org/10.1134/S0097807809050029
  • Aksenov A.V. and A.A. Kozyrev (2012) Reductions of the stationary boundary layer equation. Ufa Mathematical Journal, No. 4, 3-12. https://doi.org/10.1134/S1064562413020233
  • Kaptsov O. V. and D. O. Kaptsov. (2017) Reductions of partial differential equations to systems of ordinary differential equations. Computing technologies, No. 4, 61-67. https://doi.org/10.2991/jnmp.2004.11.1.3
  • Polyanin A. D. (2018) Reductions and new exact solutions of the equations of convective heat and mass transfer with a nonlinear source. Bulletin of NRNU "MEPhI", No. 6, 458–469. https://doi.org/10.1007/bf02827383
  • Anakhaev K.N. (2022) On movements with variable acceleration. Proceedings of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, No. 6 (110), 13-18. https://doi.org/10.35330/1991-6639-2022-6-110-13-18
  • Anakhaev K.N. (2016) Definition of modular elliptic function in problems of the free-flow filtration. Doklady Physics, No. 9, 449-452. https://doi.org/10.1134/S1028335816080012
  • M.R. Petrichenko, E.V. Kotov, D.D. Zaborova, T.A. Musorina. (2018) Weak solutions of Crocco's limit problems. Scientific and technical statements of the St. Petersburg State Polytechnic University. Physical and mathematical sciences, No. 3, 27-38. https://doi.org/10.1007/978-3-030-19868-8_82
  • Petrichenko M.R., Kotov E.V. (2019) Numerical verification of weak solutions to a typical Crocco limit problem using an implicit second-order difference scheme. Scientific and Technical Bulletin of SPbPU. Physical and mathematical sciences, No. 2, 63-72. https://doi.org/10.18721/JPM.12205
  • Zaborova D.D., Petrichenko M.R., Musorina T.A. (2018) Dupuy's Paradox and Mathematical Modeling of Nonstationary Filtration in a Homogeneous Cofferdam. Physical and mathematical sciences, No. 2, 49 – 60. https://physmath.spbstu.ru/en/article/2018.40.5/
  • Varin V.P. (2016) Asymptotic expansion of the Crocco solution and the Blasius constant. Preprint of the Institute of Applied Mathematics, 22. https://doi.org/10.1134/S0965542518040164
  • A. Asaithambi. (2005) Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients. J. Comput. Appl. Math., 176, 203-214. https://doi.org/10.1016/j.cam.2004.07.013
  • Kuo B-L. (2005) Heat transfer analysis for the Falkner-Skan wedge flow by the differential transformation method. International Journal of Heat and Mass Transfer, v. 48, 5036–5046. https://doi.org/10.1016/j.ijheatmasstransfer.2003.10.046
  • Paul M. (2014) An Accurate Taylor's Series Solution with High Radius of Convergence for the Blasius Function and Parameters of Asymptotic Variation. Journal of Applied Fluid Mechanics, v. 7., 557–564. https://doi.org/10.36884/jafm.7.04.21339
  • Liao S-J. (1999) A explicit, totally analytic approximate solution for Blasius' viscous flow problems. International Journal of Non-Linear Mechanics, v. 34, 759–778. https://doi.org/10.1016/S0020-7462(98)00056-0
  • Liu C-S. (2013) An SL (3, R) shooting method for solving the Falkner-Skan boundary layer equation. International Journal of Non-Linear Mechanics, v. 49, 145–151. https://doi.org/10.1016/0021-9991(71)90090-8
  • Liu Y. and Kurra S.N. (2011) Solution of Blasius Equation by Variational Iteration. Applied Mathematics, v. 1., 24–27. https://doi.org/10.5923/j.am.20110101.03
  • Asaithambi A. (2004) A second-order finite-difference method for the Falkner-Skan equation. Applied Mathematics and Computation, v. 14., 1021–1024. https://doi.org/10.1016/j.amc.2003.06.020
  • Asaithambi A. (2004) Numerical solution of the Falkner-Skan equation using piecewise linear functions. Applied Mathematics and Computation, v. 159, 267–273. https://doi.org/10.1016/j.amc.2003.10.047
  • Asaithambi A. (2005) Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients. Journal of Computational and Applied Mathematics, v. 176, 203–214. https://doi.org/10.1016/j.cam.2004.07.013
  • Asaithambi A. (2014) Numerical solution of the Blassius equation with Crocco-Wang transformation. Journal 0f Applied Fluid Mechanics, No. 5, 2595-2603. https://doi.org/10.18869/acadpub.jafm.68.236.25583
  • Zhao Y. and Lin Z. A Modified Homotopy Analysis Method for Solving Boundary Layer Equations. Applied Mathematics, v. 4, 11–15. https://doi.org/10.4236/am.2013.41003
  • Faiz A. (2007) Application of the Crocco–Wang equation to solve the Blasius equation. Technical acoustics, No. 7, T. 7. https://sciup.org/14316076
  • Petrichenko M.R. (2015) Approximate estimates of the Blasius constant. Scientific and technical statements of the St. Petersburg State Polytechnic University. Physical and mathematical sciences, No. 2 (218), 43-48. https://doi.org/10.5862/JPM.218.4
  • Williams, F.A. (1985). Crocco Variables for Diffusion Flames. Casci, C., Bruno, C. (eds) Recent Advances in the Aerospace Sciences, Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4298-4_20
  • L. Crocco, M. D'Urso, T. Isernia, (2009) The Contrast Source-Extended Born Model for 2D Subsurface Scattering Problems. Progress In Electromagnetics Research B, Vol. 17, 343-359. https://doi.org/10.2528/PIERB09080502
Еще
Статья научная