Анализ перспективных направлений в проектировании протезов коленного сустава нового поколения

Автор: Епишев В.В., Эрлих В.В., Сапожников С.Б., Бурнашов Я.В.

Журнал: Человек. Спорт. Медицина @hsm-susu

Рубрика: Восстановительная и спортивная медицина

Статья в выпуске: 2 т.24, 2024 года.

Бесплатный доступ

Цель: определение современного состояния исследований при проектировании протезов коленного сустава.

Протез коленного сустава, активный протез, пассивный протез, кинематика, проектирование

Короткий адрес: https://sciup.org/147244057

IDR: 147244057   |   DOI: 10.14529/hsm240224

Список литературы Анализ перспективных направлений в проектировании протезов коленного сустава нового поколения

  • A Body Parts. How the Prosthetics Market in Russia Took Off. Available at: https://www.rbc.ru/ industries/news/65377d919a7947c1f7a2dd21
  • Andrysek J., García D., Rozbaczylo C. et al. Biomechanical Responses of Young Adults with Unilateral Transfemoral Amputation Using Two Types of Mechanical Stance Control Prosthetic knee Joints. Prosthet. Orthot. Int., 2020, no. 44, pp. 314–322. DOI: 10.1177/0309364620916385
  • Andrysek J., Michelini A., Eshraghi A. et al. Gait Performance of Friction-Based Prosthetic Knee Joint Swing-Phase Controllers in Under-Resourced Settings. Prosthesis, 2022, no. 4, pp. 125–135. DOI: 10.3390/prosthesis4010013
  • Azimi V., Shu T., Zhao H. et al. Model-Based Adaptive Control of Transfemoral Prostheses: Theory, Simulation, and Experiments. IEEE Trans. Syst. Man Cybern. Syst., 2021, no. 51, pp. 1174–1191. DOI: 10.1109/TSMC.2019.2896193
  • Bartlett H.L., King S.T., Goldfarb M., Lawson B.E. Design and Assist-As-Needed Control of a Lightly Powered Prosthetic Knee. IEEE Trans. Med. Robot. Bionics, 2022, no. 4, pp. 490–501. DOI: 10.1109/TMRB.2022.3161068
  • Best T., Welker C., Rouse E., Gregg R. Data-Driven Variable Impedance Control of a Powered Knee-Ankle Prosthesis for Adaptive Speed and Incline Walking. IEEE Trans. Robot., 2023, no. 39, pp. 2151–2169. DOI: 10.1109/TRO.2022.3226887
  • Bittibssi T.M., Zekry A., Genedy M.A., Maged S.A. Implementation of Surface Electromyography Controlled Prosthetics Limb Based on Recurrent Neural Network. Concurr. Comput. Pract. Exp., 2022, no. 34, e6848. DOI: 10.1002/cpe.6848
  • Cao W., Yu H., Zhao W. et al. The Comparison of Transfemoral Amputees Using Mechanical and Microprocessor- Controlled Prosthetic knee Under Different Walking Speeds: A Randomized Cross-over Trial. Technol. Health Care, 2018, no. 26, pp. 581–592. DOI: 10.3233/THC-171157
  • Chen X., Chen C., Wang Y. et al. A Piecewise Monotonic Gait Phase Estimation Model for Controlling a Powered Transfemoral Prosthesis in Various Locomotion Modes. IEEE Robot. Autom. Lett., 2022, no. 7, pp. 9549–9556. DOI: 10.1109/LRA.2022.3191945
  • Cheng S., Bolívar-Nieto E., Welker C.G., Gregg R.D. Modeling the Transitional Kinematics between Variable-Incline Walking and Stair Climbing. IEEE Trans. Med. Robot. Bionics, 2022, no. 4, pp. 840–851. DOI: 10.1109/TMRB.2022.3185405
  • Cortino R.J., Bolívar-Nieto E., Best T.K., Gregg R.D. Stair Ascent Phase-Variable Control of a Powered Knee-Ankle Prosthesis. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 5673–5678. DOI: 10.1109/ICRA46639.2022. 9811578
  • Elgamsy R., Awad M.I., Ramadan N. et al. Localization of Composite Prosthetic Feet: Manufacturing Processes and Production Guidelines. Sci Rep, 2023, no. 13, 17421. DOI: 10.1038/s41598-023-44008-7
  • Geng Y., Wu Z., Chen Y. et al. The Control Methods of Knee-Ankle-Toe Active Transfemoral Prosthesis in Stance Phase. Asian Journal Control., 2022, no. 25, pp. 976–988. DOI: 10.1002/asjc.2848
  • Guercini L., Tessari F., Driessen J. et al. An Over-Actuated Bionic Knee Prosthesis: Modeling, Design and Preliminary Experimental Characterization. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 5467–5473. DOI: 10.1109/ICRA46639.2022.9812197
  • Gupta R., Agarwal R. Single Channel EMG-based Continuous Terrain Identification with Simple Classifier for Lower Limb Prosthesis. Biocybern. Biomed. Eng., 2019, no. 39, pp. 775–788. DOI: 10.1016/j.bbe.2019.07.002
  • Hong W., Paredes V., Chao K. et al. Consolidated Control Framework to Control a Powered Transfemoral Prosthesis Over Inclined Terrain Conditions. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 2838–2844. DOI: 10.1109/ICRA.2019.8794140
  • Hood S., Creveling S., Gabert L. et al. Powered Knee and Ankle Prostheses Enable Natural Ambulation on Level Ground and Stairs for Individuals with Bilateral Above-knee Amputation: A Case Study. Science Rep., 2022, no. 12, 15465. DOI: 10.1038/s41598-022-19701-8
  • Hood S., Gabert L., Lenzi T. Powered Knee and Ankle Prosthesis with Adaptive Control Enables Climbing Stairs With Different Stair Heights, Cadences, and Gait Patterns. IEEE Trans. Robot, 2022, no. 38, pp. 1430–1441. DOI: 10.1109/TRO.2022.3152134
  • Lee J.T., Bartlett H.L., Goldfarb M. Design of a Semi-Powered Stance-Control Swing-Assist Transfemoral Prosthesis. IEEE ASME Trans. Mechatron., 2020, no. 25, pp. 175–184. DOI: 10.1109/TMECH.2019.2952084
  • Lenzi T., Cempini M., Hargrove L., Kuiken T. Design, Development, and Testing of a Lightweight Hybrid Robotic knee Prosthesis. International Journal Robot. Research, 2018, no. 37, 027836491878599. DOI: 10.1177/0278364918785993
  • Liang W., Qian Z., Chen W. et al. Mechanisms and Component Design of Prosthetic Knees: A Review from a Biomechanical Function Perspective. Front. Bioeng. Biotechnology, 2022, no. 10, 950110. DOI: 10.3389/fbioe.2022.950110
  • Mazumder A., Hekman E.E.G., Carloni R. An Adaptive Hybrid Control Architecture for an Active Transfemoral Prosthesis. IEEE Access, 2022, no. 10, pp. 52008–52019. DOI: 10.1109/ACCESS.2022.3173348
  • Murabayashi M., Inoue K. New Function and Passive Mechanism of Transfemoral Prosthetic knee for Running Safely. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 2022, no. 11–15, pp. 4334–4337. DOI: 10.1109/EMBC48229.2022.9870830
  • Murabayashi M., Mitani T., Inoue K. Development and Evaluation of a Passive Mechanism for a Transfemoral Prosthetic Knee That Prevents Falls during Running Stance. Prosthesis, 2022, no. 4, pp. 172–183. DOI: 10.3390/prosthesis4020018
  • Muscolino J.E. Kinesiology-E-Book: The Skeletal System and Muscle Function. Elsevier Health Sciences, 2010.
  • Prosthetics & Orthotics Market Size & Share Analysis – Growth Trends & Fore-casts (2023–2028).
  • Prosthetics and Orthotics Market by Type, End-user, and Geography – Forecast and Analysis 2023–2027.
  • Using Mechanical Four-bar Linkage and Pneumatic System Prosthetic knee Joints. Journal Pros-thet. Orthot. Science Technology, 2022, no. 1, pp. 28–33. DOI: 10.36082/jpost.v1i1.647
  • Rasheed F., Martin S., Tse K.M. Design, Kinematics and Gait Analysis, of Prosthetic Knee Joints: A Systematic Review. Bioengineering, 2023, no. 10 (7), p. 773. DOI: 10.3390/bioengineering10070773
  • Schulte R.V., Zondag M., Buurke J.H., Prinsen E.C. Multi-Day EMG-Based Knee Joint Torque Estimation Using Hybrid Neuromusculoskeletal Modelling and Convolutional Neural Networks. Front. Robot. AI, 2022, no. 9, 869476. DOI: 10.3389/frobt.2022.869476
  • Sturk J.A., Lemaire E.D., Sinitski E.H. et al. Maintaining Stable Transfemoral Amputee Gait on Level, Sloped and Simulated Uneven Conditions in a Virtual Environment. Disabil. Rehabilitation Assist. Technology, 2019, no. 14, pp. 226–235. DOI: 10.1080/17483107.2017.1420250
  • Tran M., Gabert L., Cempini M., Lenzi T. A Lightweight, Efficient Fully Powered Knee Prosthesis with Actively Variable Transmission. IEEE Robot. Autom. Lett., 2019, no. 4, pp. 1186–1193. DOI: 10.1109/LRA.2019.2892204
  • Wang S. Biomechanical Analysis of the Human Knee Joint. Journal Healthc. Eng., 2022, 9365362. DOI: 10.1155/2022/9365362
  • Warner H., Khalaf P., Richter H. et al. Early Evaluation of a Powered Transfemoral Pros-thesis with Force-Modulated Impedance Control and Energy Regeneration. Med. Eng. Physiology, 2021, no. 100, 103744. DOI: 10.1016/j.medengphy.2021.103744
  • Yang C., Xi X., Chen S. et al. SEMG-based Multi-features and Predictive Model for Knee-joint-angle Estimation. AIP Adv., 2019, no. 9, 095042. DOI: 10.1063/1.5120470
  • Zhang Y., Liu S., Mo X. et al. Optimization and Dynamics of Six-bar Mechanism Bionic Knee. Proceedings of the 2019 WRC Symposium on Advanced Robotics and Automation (WRC SARA), Beijing, China, 2019, pp. 91–96. DOI: 10.1109/WRC-SARA.2019.8931941
Еще
Статья научная