Анализ подходов и методов локализации акустических источников
Автор: Шаход Д.М., Агафонов Е.Д.
Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu
Рубрика: Информационно-коммуникационные технологии
Статья в выпуске: 3 т.17, 2024 года.
Бесплатный доступ
В данной статье представлен обзор традиционных методов локализации акустических источников, основанных на обработке сигналов, а также современных методов, основанных на применении глубоких нейронных сетей. Проанализированы и рассмотрены преимущества и недостатки приведенных методов. Несмотря на то что некоторые традиционные методы могут адаптироваться к наблюдаемым сигналам, все они зависят от принятых предположений и допущений о характере среды, о свойствах сигналов и т.д. Модели глубокого обучения явно не требуют ни одного из этих предположений, а вместо этого эффективно адаптируются к предоставленным обучающим данным. Однако это также является основным недостатком современных методов, поскольку они менее способны к обобщению и менее универсальны, чем традиционные методы. Дано обоснование необходимости развития новых методов локализации, а также интеграции традиционных и современных интеллектуальных методов локализации для объединения преимуществ каждого из этих групп методов.
Локализация акустических источников, обработка сигналов, глубокие нейронные сети, обучающие данные
Короткий адрес: https://sciup.org/146282878
IDR: 146282878
Список литературы Анализ подходов и методов локализации акустических источников
- Сазонтов А. Г., Смирнов И. П. Локализация источника в акустическом волноводе с неточно известными параметрами с использованием согласованной обработки в модовом пространстве. Акустический журнал, 2019, 65(4), 540–555 [Sazontov A. G., Smirnov, I. P. Source localization in an acoustic waveguide with inaccurately known parameters using matched mode space processing, J. Acoust., 65(4), 540–550 (in Rus.)]
- Mesaros A., Heittola T., Eronen A., Virtanen T. Acoustic event detection in real life recordings. 18th European Signal Processing Conference, IEEE. 2010, 1267–1271.
- Reynolds D. A. Speaker identification and verification using Gaussian mixture speaker models, Speech communication, 1995, 17(1–2), 91–108.
- Aggarwal R., Singh J. K., Gupta V. K., Rathore S., Tiwari M., Khare A. Noise reduction of speech signal using wavelet transform with modified universal threshold, International Journal of Computer Applications, 2011, 20(5), 4–19.
- Шаход Д. М., Ибряева О. Л. Метод подавления акустического эха на основе рекуррентной нейронной сети и алгоритма кластеризации. Вестник ЮУрГУ. Вычислительная математика и информатика, 2022, 11(2), 43–58 [Shahoud Gh.M., Ibryaeva O. L. Method of an Acoustic Echo Suppression Based on Recurrent Neural Network and Clustering, Bull. SUSU. Comput. Math. Soft. Eng., 2022, 11(2), 43–58 (in Rus.)]
- Sturdivant R. L., Chong E. K. Systems engineering baseline concept of a multispectral drone detection solution for airports, IEEE Access, 2017, 5, 7123–7138.
- Tehrani A. K.Z., Makkiabadi B., Parsayan A., Hozhabr S. H. Sound source localization using time differences of arrival; Euclidean distance matrices based approach. 2018 9th International Symposium on Telecommunications, IEEE. 2017, 2017, 91–95.
- Chiariotti P., Martarelli M., Castellini P. Acoustic beamforming for noise source localization – Reviews, methodology and applications, Mechanical Systems and Signal Processing, 2019, 120, 422–448.
- Desai D., Mehendale N. A Review on Sound Source Localization Systems, Archives of Computational Methods in Engineering, 2022, 29(7), 4631–4642.
- Knapp C., Carter G. The generalized correlation method for estimation of time delay, IEEE transactions on acoustics, speech, and signal processing, 1976, 24(4), 320–327.
- Hirvonen T. Classification of spatial audio location and content using convolutional neural networks, Audio Engineering Society Convention 138, Audio Engineering Society, 2015.
- Nguyen T. N.T., Nguyen N. K., Phan H., Pham L., Ooi K., Jones D. L., Gan W. S. A general network architecture for sound event localization and detection using transfer learning and recurrent neural network. ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. 2021, 935–939.
- Adavanne S., Politis A., Nikunen J., Virtanen T. Sound event localization and detection of overlapping sources using convolutional recurrent neural networks, IEEE Journal of Selected Topics in Signal Processing, 2018, 13(1), 34–48.
- Yalta N., Nakadai K., Ogata T. Sound source localization using deep learning models, Journal of Robotics and Mechatronics, 2017, 29(1), 37–48.
- Nilanjan D., Amira S. A. Direction of Arrival Estimation and Localization of Multi-Speech Sources, Cham, Switzerland: Springer, 2018, 53.
- Lalan K. Microphone Array Processing for Acoustic Source Localization in Spatial and Spherical Harmonics Domain, thesis submitted for the degree of doctor of philosophy, Indian Institute of Technology Kanpur. Kanpur, 2015, 18.
- Siano D., Viscardi M., Panza M. A. Experimental acoustic measurements in far field and near field conditions: characterization of a beauty engine cover, Recent Advances in Fluid Mechanics and Thermal Engineering, 2014, 50–57.
- Cobos M., Antonacci F., Alexandridis A., Mouchtaris A., Lee B. A Survey of Sound Source Localization Methods in Wireless Acoustic Sensor Networks, Wireless Communications and Mobile Computing, 2017, 2017, 1–24.
- Sand S., Dammann A., Mensing C. Positioning in wireless communications systems, John Wiley & Sons, 2014, 280.
- Zhu N., Reza T. A modified cross-correlation algorithm to achieve the time difference of arrival in sound source localization, Measurement and Control, 2019, 52(3–4), 212–221.
- Rascon C., Meza I. Localization of sound sources in robotics: A review, Robotics and Autonomous Systems, 2017, 96, 184–210.
- Hosangadi R. A Proposed Method for Acoustic Source Localization in Search and Rescue Robot. Proceedings of the 5th International Conference on Mechatronics and Robotics Engineering, ACM. 2019, 134–140.
- Merino-Martínez R., Sijtsma P., Snellen M., Ahlefeldt T., Antoni J., Bahr C. J., Blacodon D., Ernst D., Finez A., Funke S., Geyer T. F. A review of acoustic imaging methods using phased microphone arrays: Part of the “Aircraft Noise Generation and Assessment” Special Issue, CEAS Aeronautical Journal, 2019, 10, 197–230.
- Schmidt R. Multiple emitter location and signal parameter estimation, IEEE transactions on antennas and propagation, 1986, 34(3), 276–280.
- Zhong Y., Xiang J., Chen X., Jiang Y., Pang J. Multiple Signal Classification-Based Impact Localization in Composite Structures Using Optimized Ensemble Empirical Mode Decomposition, Applied Sciences, 2018, 8(9), 1447.
- Фурлетов Ю. М. Классификация объектов и их действий методом анализа звуковых сигналов, DSPA: ВОПРОСЫ ПРИМЕНЕНИЯ ЦИФРОВОЙ ОБРАБОТКИ СИГНАЛОВ Учредители: Российское научно-техническое общество радиотехники, электроники и связи им. АС Попова, 2021, 11(4), 15–21 [Furletov Yu. M. Classification of objects and their actions by analyzing sound signals. DSPA: ISSUES OF APPLICATION OF DIGITAL SIGNAL PROCESSING Founders: Russian Scientific and Technical Society of Radio Engineering, Electronics and Communications named. AS Popova, 2021, 11(4), 15–21 (in Rus.)]
- Grumiaux P. A., Kitić S., Girin L., Guérin A. A survey of sound source localization with deep learning methods, The Journal of the Acoustical Society of America, 152(1), 107–151.
- Chakrabarty S., Habets E. A. Multi-speaker DOA estimation using deep convolutional networks trained with noise signals, IEEE Journal of Selected Topics in Signal Processing, 2019, 13(1), 8–21.
- He W., Motlicek P., Odobez J. M. Deep neural networks for multiple speaker detection and localization. 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE. Brisbane, Australia, 2018, 74–79.
- Thuillier E., Gamper H., Tashev I. J. Spatial audio feature discovery with convolutional neural networks. 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE. Calgary, Canada, 2018, 6797–6801.
- Vera-Diaz J.M., Pizarro D., Macias-Guarasa J. Towards end-to-end acoustic localization using deep learning: From audio signals to source position coordinates, Sensor, 2018, 18(10), 3418.
- Nguyen T. N.T., Gan W. S., Ranjan R., Jones D. L. Robust source counting and DOA estimation using spatial pseudo-spectrum and convolutional neural network, IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28, 2626–2637.
- Chakrabarty S., Habets E. A. Multi-scale aggregation of phase information for complexity reduction of CNN based DOA estimation. 2019 27th European Signal Processing Conference (EUSIPCO), IEEE. 2019, 1–5.
- Liu N., Chen H., Songgong K., Li Y. Deep learning assisted sound source localization using two orthogonal first-order differential microphone arrays, J. Acoust. Soc. Am., 2021, 1069–1084.
- Giovanni A., Roberto A. Investigating the generalization abilities of a deep learning method for sound source localization using small-sized microphone arrays, Project Course – M. Sci. on Music and Acoustic Engineering, Politecnico di Milano. Italy, 2022.
- Lin Y., Wang Z. A report on sound event localization and detection, Detection Classification Acoust. Scenes Events Challenge, Tech. Rep., 2019.
- Lu Z. Sound event detection and localization based on CNN and LSTM, Detection Classification Acoust. Scenes Events Challenge, Tech. Rep., 2019.
- Maruri H. C., Meyer P. L., Huang J., Ontiveros J. A.D.H., Lu H. Gcc-phat cross-correlation audio features for simultaneous sound event localization and detection (seld) on multiple rooms, DCASE 2019 Challenge, Tech. Rep., 2019.
- Zhang J., Ding W., He L. Data augmentation and prior knowledge-based regularization for sound event localization and detection, DCASE 2019 Detection and Classification of Acoustic Scenes and Events 2019 Challenge, 2019.
- Xue W., Ying T., Chao Z., Guohong D. Multi-beam and multi-task learning for joint sound event detection and localization, DCASE 2019 Detection and Classification of Acoustic Scenes and Events 2019 Challenge, 2019.
- Cao Y., Kong Q., Iqbal T., An F., Wang W., Plumbley M. D. Polyphonic sound event detection and localization using a two-stage strategy, arXiv preprint arXiv:1905.00268, 2019.
- Tian C. Multiple CRNN for SELD, parameters, 2020, 488211(508257), 490326.
- He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, 770–778.
- He W., Motlicek P., Odobez J. M. Adaptation of multiple sound source localization neural networks with weak supervision and domain-adversarial training. ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. 2019, 770–774.
- Suvorov D., Dong G., Zhukov R. Deep residual network for sound source localization in the time domain, arXiv preprint arXiv:1808.06429, 2018.
- Le Moing G., Vinayavekhin P., Agravante D. J., Inoue T., Vongkulbhisal J., Munawar A., Tachibana R. Data-efficient framework for real-world multiple sound source 2D localization. ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. 2021, 3425–3429.