Analysis of stress fields at the crack tip and fracture resistance parameters under conditions of gradient plasticity

Бесплатный доступ

This paper presents a numerical analysis based on previously obtained experimental data on crack growth for P2M and 34X steels, aluminum 7050 and titanium alloy Ti-6Al-4V compact samples (CTS) with a one-sided lateral incision, within the framework of the conventional theory of strain gradient plasticity (CMSG), based on the Taylor dislocation model. In this study, the initial points of the curved crack trajectory were considered for two classical states: plane strain and plane stress with normal separation and pure shear. The constitutional equations of material behavior for CMSGP theories were introduced into the finite element computational complex and new fields of stress-strain state parameters for the conditions of strain gradient plasticity were obtained. The results of FE calculations show a significant increase in the magnitude of the true stress fields at the crack tip, taking into account the plastic deformation gradients and the internal characteristic length of the material. The numerical results also show that the singularity in the crack tip region is different for the model of gradient plasticity of deformations and depends on the mode I/II. An important conclusion regarding the numerical results regarding the parameters of the material's fracture resistance is that the new plastic stress intensity coefficients for gradient plasticity differ for plane strain and plane stress, and also show significant sensitivity to the plastic properties of the material and to the scale parameter of the intrinsic material length, which is attractive from the point of view of practical application and further fundamental research.

Еще

Strain gradient plasticity, plastic stress intensity factor, plane strain, plane stress, mode i, mode ii

Короткий адрес: https://sciup.org/146282376

IDR: 146282376   |   DOI: 10.15593/perm.mech/2021.4.13

Статья научная