Аналоги соматостатина, меченные радионуклидами, для терапии онкологических заболеваний. Обзор

Автор: Тищенко В.К., Петриев В.М., Крылов В.В., Власова О.П., Шегай П.В., Иванов С.А., Каприн А.Д.

Журнал: Радиация и риск (Бюллетень Национального радиационно-эпидемиологического регистра) @radiation-and-risk

Рубрика: Научные статьи

Статья в выпуске: 2 т.31, 2022 года.

Бесплатный доступ

В настоящее время основным требованием к радионуклидной терапии онкологических заболеваний является специфическое воздействие на опухолевые клетки с минимальной токсичностью в отношении здоровых тканей. Молекулярная основа селективной противоопухолевой терапии обеспечивается сверхэкспрессией соматостатиновых рецепторов (ССТр) на клеточной мембране различных опухолей и их метастазов. Природный соматостатин не может быть использован в качестве векторной молекулы для доставки радионуклидов ввиду короткого периода полураспада в крови (1-3 мин). Синтетические аналоги соматостатина пептидной природы, меченные терапевтическими радионуклидами (радиопептиды), также обладают высоким сродством с ССТр и улучшенной фармакокинетикой по сравнению с соматостатином, и потому представляют огромный интерес для направленной терапии рака, именуемой пептид-рецепторной радионуклидной терапией (ПРРТ). В обзоре представлена информация о наиболее значимых на сегодняшний день аналогах соматостатина, меченных радионуклидами 111In, 90Y, 177Lu, для терапии опухолей со сверхэкспрессией ССТр. Приведены данные об эффективности лечения и профиле токсичности ПРРТ, проводимой с различными поколениями радиофармацевтических лекарственных препаратов (РФЛП), нацеленных на ССТр, включая рандомизированное контролируемое исследование NETTER-1. Кроме того, обсуждаются некоторые стратегии оптимизации ПРРТ, такие как тандемная терапия, внутриартериальный способ введения РФЛП, модификация препаратов для оптимизации фармакокинетики, а также разработка новых препаратов, содержащих a-излучающие радионуклиды, или являющихся антагонистами ССТр.

Еще

Аналоги соматостатина, радиопептиды, пептид-рецепторная радионуклидная терапия, соматостатиновые рецепторы, производные октреотида, радиофармацевтический лекарственный препарат (рфлп), dotatoc, dotatate, нейроэндокринные опухоли

Короткий адрес: https://sciup.org/170195069

IDR: 170195069   |   DOI: 10.21870/0131-3878-2022-31-2-76-96

Список литературы Аналоги соматостатина, меченные радионуклидами, для терапии онкологических заболеваний. Обзор

  • Global Cancer Observatory. [Электронный ресурс]. URL: https://gco.iarc.fr/ (дата обращения 08.02.2022).
  • Reubi J.C., Laissue J., Krenning E., Lamberts S.W. Somatostatin receptors in human cancer: incidence, characteristics, functional correlates and clinical implications //J. Steroid Biochem. Mol. Biol. 1992. V. 43, N 1-3. P. 27-35.
  • Okarvi S.M. Peptide-based radiopharmaceuticals and cytotoxic conjugates: potential tools against cancer //Cancer Treat. Rev. 2008. V. 34, N 1. P. 13-26.
  • Eychenne R., Bouvry C., Bourgeois M., Loyer P., Benoist E., Lepareur N. Overview of radiolabeled somatostatin analogs for cancer imaging and therapy //Molecules. 2020. V. 25, N 17. P. 4012.
  • Reubi J.C., Waser B., Schaer J.C., Laissue J.A. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands //Eur. J. Nucl. Med. 2001. V. 28, N 7. P. 836-846.
  • Volante M., Rosas R., Allia E., Granata R., Baragli A., Muccioli G., Papotti M. Somatostatin, cortistatin and their receptors in tumours //Mol. Cell Endocrinol. 2008. V. 286, N 1-2. P. 219-229.
  • Pauwels E., Cleeren F., Bormans G., Deroose C.M. Somatostatin receptor PET ligands - the next generation for clinical practice //Am. J. Nucl. Med. Mol. Imaging. 2018. V. 8, N 5. P. 311-331.
  • Bidakhvidi A.N., Goffin K., Dekervel J., Baete K., Nackaerts K., Clement P., van Cutsem E., Verslype C., Deroose C.M. Peptide receptor radionuclide therapy targeting the somatostatin receptor: basic principles, clinical applications and optimization strategies //Cancers (Basel). 2022. V. 14, N 1. P. 129.
  • Krenning E.P., Valkema R., Kooji P.P., Breeman W.A., Bakker W.H., de Herder W.W., van Eijck C.H., Kwekkeboom D.J., de Jong M., Pauwels S. Scintigraphy and radionuclide therapy with [indium-111-labelled-diethyl triamine penta-acetic acid-D-Phe1]-octreotide //Ital. J. Gastroenterol. Hepatol. 1999. V. 3, N S2. P. S219-S223.
  • Valkema R., de Jong M., Bakker W.H., Breeman W.A., Kooij P.P., Lugtenburg P.J., de Jong F.H., Christiansen A., Kam B.L., de Herder W.W., Stridsberg M., Lindemans J., Ensing G., Krenning E.P. Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience //Semin. Nucl. Med. 2002. V. 32, N 2. P. 110-122.
  • Delpassand E.S., Sims-Mourtada J., Saso H., Azhdarinia A., Ashoori F., Torabi F., Espenan G, Moore W.H., Woltering E., Anthony L. Safety and efficacy of radionuclide therapy with high-activity In-111 pentetreotide in patients with progressive neuroendocrine tumors //Cancer Biother. Radiopharm. 2008. V. 23, N 3. P. 292-300.
  • Waldherr C., Pless M., Maecke H.R., Haldemann A., Mueller-Brand J. The clinical value of [90Y-D0TA]-D-Phe1-Tyr3-octreotide (90Y-D0TAT0C) in the treatment of neuroendocrine tumours: a clinical phase II study //Ann. Oncol. 2001. V. 12, N 7. P. 941-945.
  • Waldherr C., Pless M., Maecke H.R., Schumacher T., Crazzolara A., Nitzsche E.U., Haldemann A., Mueller-Brand J. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-D0TAT0C //J. Nucl. Med. 2002. V. 43, N 5. P. 610-616.
  • Krenning E.P., Kwekkeboom D.J., Valkema R., Pauwels S., Kvols L.K., de Jong M. Peptide receptor radionuclide therapy //Ann. N.Y. Acad. Sci. 2004. V. 1014, N 1. P. 234-245.
  • Virgolini I., Traub T., Novotny C., Leimer M., Füger B., Li SR., Patri P., Pangerl T., Angelberger P., Raderer M., Burggasser G., Andreae F., Kurtaran A., Dudczak R. Experience with indium-111 and yttrium-90-labeled somatostatin analogs //Curr. Pharm. Des. 2002. V. 8, N 20. P. 1781-1807.
  • Virgolini I., Britton K., Buscombe J., Moncayo R., Paganelli G., Riva P. In- and Y-D0TA-lanreotide: results and implications of the MAURITIUS trial //Semin. Nucl. Med. 2002. V. 32, N 2. P. 148-155.
  • Esser J.P., Krenning E.P., Teunissen J.J., Kooij P.P., van Gameren A.L., Bakker W.H., Kwekkeboom D.J. Comparison of [177Lu-D0TA0,Tyr3]octreotate and [177Lu-D0TA0,Tyr3]octreotide: which peptide is preferable for PRRT? //Eur. J. Nucl. Med. Mol. Imaging. 2006. V. 33, N 11. P. 1346-1351.
  • Strosberg J., El-Haddad G., Wolin E., Hendifar A., Yao J., Chasen B., Mittra E., Kunz P.L., Kulke M.H., Jacene H., Bushnell D., O'Dorisio T.M., Baum R.P., Kulkarni H.R., Caplin M., Lebtahi R., Hobday Y., Delpassand E., van Cutsem E., Benson A., Srirajaskanthan R., Pavel M., Mora J., Berlin J., Grande E., Reed N., Seregni E., Öberg K., Sierra M.L., Santoro P., Thevenet T., Erion J.L., Ruszniewski P., Kwekkeboom D., Krenning E., NETTER-1 Trial investigators. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors //N. Engl. J. Med. 2017. V. 376, N 2. P. 125-135.
  • Strosberg J., Caplin M.E., Kunz P.L., Ruszniewski P.B., Bodei L., Hendifar A., Mittra E., Wolin E.M., Yao J.C., Pavel M.E., Grande E., van Cutsem E., Seregni E., Duarte H., Gericke G., Bartalotta A., Mariani M.F., Demange A., Mutevelic S., Krenning E.P., NETTER-1 investigators. 177Lu-Dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial //Lancet Oncol. 2021. V. 22, N 12. P. 1752-1763.
  • Hennrich U., Kopka K. Lutathera®: the first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy //Pharmaceuticals (Basel). 2019. V. 12, N 3. P. 114.
  • Vegt E., de Jong M., Wetzels J.F.M., Masereeuw R., Melis M., Oyen W.J.G., Gotthardt M., Boerman O.C. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention //J. Nucl. Med. 2010. V. 51, N 7. P. 1049-1058.
  • Bodei L., Cremonesi M., Zoboli S., Grana C., Bartolomei M., Rocca P., Caracciolo M, Mäcke H.R., Chinol M., Paganelli G. Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study //Eur. J. Nucl. Med. Mol. Imaging. 2003. V. 30, N 2. P. 207-216.
  • Brabander T., van der Zwan W.A., Teunissen J.J.M., Kam B.L.R., Feelders R.A., de Herder W.W., van Eijck C.H.J., Franssen G.J.H., Krenning E.P., Kwekkeboom D.J. Long-term efficacy, survival, and safety of [177Lu-D0TA(0),Tyr(3)]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors //Clin. Cancer Res. 2017. V. 23, N 16. P. 4617-4624.
  • Goncalves I., Burbury K., Michael M., Iravani A., Ravi Kumar A.S., Akhurst T., Tiong I.S., Blombery P., Hofman M.S., Westerman D., Hicks R.J., Kong G. Characteristics and outcomes of therapy-related myeloid neoplasms after peptide receptor radionuclide/chemoradionuclide therapy (PRRT/PRCRT) for metastatic neuroendocrine neoplasia: a single-institution series //Eur. J. Nucl. Med. Mol. Imaging. 2019. V. 46, N 9. P. 1902-1910.
  • Chantadisai M., Kulkarni H.R., Baum R.P. Therapy-related myeloid neoplasm after peptide receptor radionuclide therapy (PRRT) in 1631 patients from our 20 years of experiences: prognostic parameters and overall survival //Eur. J. Nucl. Med. Mol. Imaging. 2021. V. 48, N 5. P. 1390-1398.
  • Bergsma H., van Lom K., Raaijmakers M.H.G.P., Konijnenberg M., Kam L.R., Teunissen J.J.M., de Herder W.W., Krenning E.P., Kwekkeboom D.J. Persistent hematologic dysfunction after peptide receptor radionuclide therapy with 177Lu-D0TATATE: incidence, course, and predicting factors in patients with gastroenteropancreatic neuroendocrine tumors //J. Nucl. Med. 2018. V. 59, N 3. P. 452-458.
  • de Jong M., Breeman W.A.P., Valkema R., Bernard B.F., Krenning E.P. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs //J. Nucl. Med. 2005. V. 46, N S1. P. 13S-17S.
  • Villard L., Romer A., Marincek N., Brunner P., Koller M.T., Schindler C., Ng Q.K.T., Mäcke H.R., MüllerBrand J., Rochlitz C., Briel M., Walter M.A. Cohort study of somatostatin-based radiopeptide therapy with (90)Y-D0TA-T0C versus (90)Y-D0TA-T0C plus (177)Lu-D0TA-T0C in neuroendocrine cancers //J. Clin. Oncol. 2012. V. 30, N 10. P. 1100-1106.
  • Kunikowska J., Krolicki L., Hubalewska-Dydejczyk A., Mikotajczak R., Sowa-Staszczak A., Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-D0TATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? //Eur. J. Nucl. Med. Mol. Imaging. 2011. V. 38, N 10. P. 1788-1797.
  • Parghane R.V., Mitra A., Bannore T.U., Rakshit S., Banerjee S., Basu S. Initial clinical evaluation of indigenous 90Y-DOTATATE in sequential duo-PRRT approach (177Lu-DOTATATE and 90Y-DOTATATE) in neuroendocrine tumors with large bulky disease: observation on tolerability, 90Y-D0TATATE post-PRRT imaging characteristics (bremsstrahlung and PETCT) and early adverse effects //World J. Nucl. Med. 2021. V. 20, N 1. P. 73-81.
  • Baum R.P., Kulkarni H.R., Singh A., Kaemmerer D., Mueller D., Prasad V., Hommann M., Robiller F.C., Niepsch K., Franz H., Jochems A., Lambin P., Hörsch D. Results and adverse events of personalized peptide receptor radionuclide therapy with 90Yttrium and 177Lutetium in 1048 patients with neuroendocrine neoplasms //0ncotarget. 2018. V. 9, N 24. P. 16932-16950.
  • Singh A., Zhang J., Kulkarni H., Baum R. Intra-arterial PRRT of sstr-expressing tumors in patients with hepatic only versus extrahepatic tumor: efficacy and safety evaluation //J. Nucl. Med. 2019. V. 60, N S1. P. 625.
  • Kolasinska-Cwikta A., Nowicki M.L., Sankowski A.J., Patucki J.M., Buscombe J.R., Glinka L., Cwikta J.B. Radiological and clinical efficacy of intra-arterial 90Y-D0TATATE in patients with unresectable, progressive, liver dominant neuroendocrine neoplasms //J. Clin. Med. 2021. V. 10, N 8. P. 1794.
  • Thakral P., Sen I., Das S.S., Manda D., Cb V., Malik D. Dosimetric analyses of intra-arterial versus standard intravenous administration of 177Lu-D0TATATE in patients of well differentiated neuroendocrine tumor with liver-dominant metastatic disease //Br. J. Radiol. 2021. V. 94, N 1126. P. 20210403.
  • Tian R., Jacobson O., Niu G., Kiesewetter D.O., Wang Z., Zhu G., Ma Y., Liu G., Chen X. Evans blue attachment enhances somatostatin receptor subtype-2 imaging and radiotherapy //Theranostics. 2018. V. 8, N 3. P. 735-745.
  • Zhang J., Wang H., Jacobson O., Cheng Y., Niu G., Li F., Bai C., Zhu Z., Chen X. Safety, pharmacokinetics, and dosimetry of a long-acting radiolabeled somatostatin analog 177Lu-D0TA-EB-TATE in patients with advanced metastatic neuroendocrine tumors //J. Nucl. Med. 2018. V. 59, N 11. P. 1699-1705.
  • Liu Q., Zang J., Sui H., Ren J., Guo H., Wang H., Wang R., Jacobson O., Zhang J., Cheng Y., Zhu Z., Chen X. Peptide receptor radionuclide therapy of late-stage neuroendocrine tumor patients with multiple cycles of 177Lu-D0TA-EB-TATE //J. Nucl. Med. 2021. V. 62, N 3. P. 386-392.
  • Zamora P.O., Gulhke S., Bender H., Diekmann D., Rhodes B.A., Birsack H.J., Knapp Jr.F.F. Experimental radiotherapy of receptor-positive human prostate adenocarcinoma with 188Re-RC-160, a directly-radiolabeled somatostatin analogue //Int. J. Cancer. 1996. V. 65, N 2. P. 214-220.
  • Molina-Trinidad E.M., Arteaga de Murphy C., Ferro-Flores G., Murphy-Stack E., Jung-Cook H. Radio-pharmacokinetic and dosimetric parameters of 188Re-lanreotide in athymic mice with induced human cancer tumors //Int. J. Pharm. 2006. V. 310, N 1-2. P. 125-130.
  • Nelson C.A., Aure M.T., Adams C.T., Zinn K.R. The somatostatin analog 188Re-P2045 inhibits the growth of AR42J pancreatic tumor xenografts //J. Nucl. Med. 2014. V. 55, N 12. P. 2020-2025.
  • Edelman M.J., Clamon G., Kahn D., Magram M., Lister-James J., Line B.R. Targeted radiopharmaceutical therapy for advanced lung cancer: phase I trial of rhenium Re188 P2045, a somatostatin analog //J. Thorac. 0ncol. 2009. V. 4, N 12. P. 1550-1554.
  • Baum P., Singh A., Kulkarni H., Bernhardt P., Ryden T., Schuchardt C., Gracheva N., Grundler P.V., Köster U., Müller D., Pröhl M., Zeevaart J.R., Schibli R., van de Meulen N.P. First-in-humans application of 161Tb: a feasibility study using 161Tb-D0TAT0C //J. Nucl. Med. 2021. V. 62, N 10. P. 1391-1397.
  • Loveless C.S., Radford L.L., Ferran S.J., Queern S., Shepherd M.R., Lapi S.E. Photonuclear production, chemistry, and in vitro evaluation of the theranostic radionuclide 47Sc //EJNMMI Res. 2019. V. 9, N 1. P. 42.
  • King A.P., Lin F.I., Escorcia F.E. Why bother with alpha particles? //Eur. J. Nucl. Med. Mol. Imaging. 2021. V. 49, N 1. P. 7-17.
  • Norenberg J.P., Krenning B.J., Konings I.R., Kusewitt D.F., Nayak T.K., Anderson T.L., de Jong M., Garmestani K., Brechbiel M.W., Kvols L.K. 213Bi-[D0TA0, Tyr3]octreotide peptide receptor radionuclide therapy of pancreatic tumors in a preclinical animal model //Clin. Cancer Res. 2006. V. 12. P. 897-903.
  • Miederer M., Henriksen G., Alke A., Mossbrugger I., Quintanila-Martinez L., Senekowitsch-Schmidtke R., Essler M. Preclinical evaluation of the alpha-particle generator nuclide 225Ac for somatostatin receptor radiotherapy of neuroendocrine tumors //Clin. Cancer Res. 2008. V. 14, N 11. P. 3555-3561.
  • Rozgaja Stallons T.A., Saidi A., Tworowska I., Delpassand E.S., Torgue J.J. Preclinical investigation of 212Pb-DOTAMTATE for peptide receptor radionuclide therapy in a neuroendocrine tumor model //Mol. Cancer. Ther. 2019. V. 18, N 5. P. 1012-1021.
  • Kratochwil C., Bruchertseifer F., Giesel F.L. Ac-225-DOTATOC - dose finding for alpha particle emitter based radionuclide therapy of neuroendocrine tumors //Eur. J. Nucl. Med. Mol. Imaging. 2015. V. 42, N S1. P. S36.
  • Zhang J., Kulkarni H.R., Baum R.P. 225Ac-DOTATOC-targeted somatostatin receptor a-therapy in a patient with metastatic neuroendocrine tumor of the thymus, refractory to ß-radiation //Clin. Nucl. Med. 2021. V. 46, N 12. P. 1030-1031.
  • Kratochwil C., Apostolidis L., Rathke H., Apostolidis C., Bicu F., Bruchertseifer F., Choyke P.L., Haberkorn U., Giesel F.L., Morgenstern A. Dosing 225Ac-DOTATOC in patients with somatostatin-receptor-positive solid tumors: 5-year follow-up of hematological and renal toxicity //Eur. J. Nucl. Med. Mol. Imaging. 2021. V. 49, N 1. P. 54-63.
  • Ballal S., Yadav M.P., Bal C., Sahoo R.K., Tripathi M. Broadening horizons with 225Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to 177Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety //Eur. J. Nucl. Med. Mol. Imaging. 2020. V. 47, N 4. P. 934-946.
  • Delpassand E.S., Tworowska I., Esfandiari R., Torgue J., Hurt J., Shafile A., Nunez R. Targeted alphaemitter therapy with 212Pb-DOTAMTATE for the treatment of metastatic SSTR-expressing neuroendocrine tumors: first-in-human, dose-escalation clinical trial //J. Nucl. Med. 2022. V. 63, N 3. P. jnumed.121.263230.
  • Ginj M., Zhang H., Waser B., Cescato R., Wild D., Wang X., Erchegyi J., Rivier J., Mäcke H.R., Reubi J.C. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors //Proc. Natl. Acad. Sci. USA. 2006. V. 103, N 44. P. 16436-16441.
  • Cescato R., Waser B., Fani M., Reubi J.C. Evaluation of 177Lu-DOTA-sst2 antagonist versus 177Lu-DOTA-sst2 agonist binding in human cancers in vitro //J. Nucl. Med. 2011. V. 52, N 12. P. 1886-1890.
  • Wang X. Comprehensive evaluation of a somatostatin-based radiolabelled antagonist for diagnostic imaging and radionuclide therapy //Eur. J. Nucl. Med. Mol. Imaging. 2012. V. 39, N 12. P. 1876-1885.
  • Nicolas G.P., Mansi R., McDougall L., Kaufmann J., Bouterfa H., Wild D., Fani M. Biodistribution, pharmacokinetics, and dosimetry of 177Lu-, 90Y-, and ^In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist 177Lu-DOTATATE: the mass effect //J. Nucl. Med. 2017. V. 58, N 9. P. 1435-1441.
  • Dalm S.U., Nonnekens J., Doeswijk G.N., de Blois E., van Gent D.C., Konijnenberg M.W., de Jong M. Comparison of the therapeutic response to treatment with a 177Lu-labeled somatostatin receptor agonist and antagonist in preclinical models //J. Nucl. Med. 2016. V. 57, N 2. P. 260-265.
  • Wild D., Fani M., Fischer R., Del Pozzo L., Kaul F., Krebs S., Fischer R., Rivier J., Reubi J.C., Maecke H.R., Weber W.A. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study //J. Nucl. Med. 2014. V. 55, N 8. P. 1248-1252.
  • Reidy-Lagunes D., Pandit-Taskar N., O'Donoghue J.A., Krebs S., Staton K.D., Lyashchenko S.K., Lewis J.S., Raj N., Gönen M., Lohrmann C., Bodei L., Weber W.A. Phase I trial of well-differentiated neuroendocrine tumors (NETs) with radiolabeled somatostatin antagonist 177Lu-satoreotide tetraxetan //Clin. Cancer Res. 2019. V. 25, N 23. P. 6939-6947.
  • Schuchardt C., Kulkarni H., Singh A., Müller D., Fani M., Maecke H., Baum R. Peptide receptor radionuclide therapy using somatostatin receptor antagonists: first results of biodistribution and dosimetry of Lu-177 DOTA-LM3 compared to Lu-177 DOTATOC //J. Nucl. Med. 2019. V. 60, N S1. P. 352.
  • Baum R.P., Zhang J., Schuchardt C., Müller D., Mäcke H. First-in-humans study of the SSTR antagonist 177Lu-DOTA-LM3 for peptide receptor radionuclide therapy in patients with metastatic neuroendocrine neoplasms: dosimetry, safety, and efficacy //J. Nucl. Med. 2021. V. 62, N 11. P. 1571-1581.
  • Borgna F., Haller S., Monne Rodriguez J.M., Ginj M., Grundler P.V., Zeevaart J.R., Köster U., Schibli R., van der Meulen N.P., Müller C. Combination of terbium-161 with somatostatin receptor antagonists -a potential paradigm shift for the treatment of neuroendocrine neoplasms //Eur. J. Nucl. Med. Mol. Imaging. 2022. V. 49, N 4. P. 1113-1126.
  • Fani M., Nicolas G.P., Wild D. Somatostatin receptor antagonists for imaging and therapy //J. Nucl. Med. 2017. V. 58, N S2. P. 61S-66S.
Еще
Статья научная