Analysis of the existing technology of wood impregnation by different polymeric compositions

Бесплатный доступ

The problem of efficiency of application of special means of improving the quality of impregnation, modification and preservation of wood is extremely important in Russian economy. Economic and environmental efficiency of wood treatment with the aim of increasing its structural and finishing properties is quite obvious, but at the moment there is no single methodology for determining it for different types of impregnating polymeric composite materials and for the method of impregnation. The aim of this study is a detailed analysis of traditional and perspective methods of impregnation, preservation and modification of wood using different types of polymer composite materials, and identifying the most effective methods. The study gives a list of the main methods and means of wood protection, all groups of pests harmful to wood, and forms a list of technologies for the impregnation of wood using different physical peculiarities of the process and equipment according to the critical analysis of the technological equipment of the impregnation plants. One of the important results of the study is identifying criteria for the quality of impregnation of wood and recommendations on labor protection in enterprises, with consideration of environmental aspect. According to the results of the study the following conclusions are given: 1. It is extremely advisable to optimize parameters of deep impregnation of the wood with the use of basic available technologies. 2. At this time the most promising methods of wood treatment are autoclave method using a vacuum and high pressure, and the method of exposure to wood ultrasonic electromagnetic waves. 3. Technology ultrasonic industrial impregnations is still not developed, there is no technological scheme and necessary equipment.

Еще

Wood, lumber, impregnation, polymer compositions, construction, buildings, civil engineering

Короткий адрес: https://sciup.org/143163531

IDR: 143163531   |   DOI: 10.18720/CUBS.58.3

Список литературы Analysis of the existing technology of wood impregnation by different polymeric compositions

  • Altun Y., Doǧan M., Bayramli E. Comparative study of maleated and glycidyl methacrylate functionalized terpolymers as compatibilizers for low-density polyethylene-wood flour composites. Journal of Applied Polymer Science. 2013. No. 127(2). Pp. 1010-1016.
  • Altun Y., Doǧan M., Bayramli E. Effect of alkaline treatment and pre-impregnation on mechanical and water absorbtion properties of pine wood flour containing poly (lactic acid) based green-composites. Journal of Polymers and the Environment. 2013. No. 21(3). Pp. 850-856.
  • Balaba W. M., Subramanian R. V. The kinetics of the in situ polymerization of glycidyl methacrylate in wood using dynamic mechanical measurements. Polymer Engineering & Science. 1986. No. 26(8). Pp. 576-582.
  • Bru K., Blin J., Julbe A., Volle G. Pyrolysis of metal impregnated biomass: An innovative catalytic way to produce gas fuel. Journal of Analytical and Applied Pyrolysis. 2007. No. 78(2). Pp. 291-300.
  • Bueno A.B.F., Bañón M.V.N., De Morentín L.M., García J.M. Treatment of natural wood veneers with nano-oxides to improve their fire behaviour. Materials Science and Engineering. 2014. No. 64(1). Pp. 125-127.
  • Cai X., Blanchet P. Electron-beam curing of acrylate/nanoparticle impregnated wood products. BioResources. 2015. No. 10(3). Pp. 3852-3864.
  • Chen G.C. Synthesis and evaluation of phosphortriamidates in wood for thermal and fungal decay protection. Holzforschung. 2008. No. 62(3). Pp. 318-321.
  • Cooper P.A. Rate of swelling of vacuum-impregnated wood. Wood and Fiber Science. 1996. No. 28(1). Pp. 28-38.
  • Devi R.R., Maji T.K. Effect of chemical modification with styrene and glycidyl methacrylate on the properties of pinewood. Indian Journal of Engineering and Materials Sciences. 2006. No. 13(2). Pp. 149-154.
  • Devi R.R., Maji T.K. Effect of glycidyl methacrylate on the physical properties of wood-Polymer Composites. Polymer Composites. 2007. No. 28(1). Pp. 1-5.
  • Devi R.R., Maji T.K. Effect of nano-SiO2 on properties of wood/polymer/clay nanocomposites. Wood Science and Technology. 2012. No. 46(6). Pp. 1151-1168.
  • Devi R.R., Maji T.K., Banerjee A.N. Studies on dimensional stability and thermal properties of rubber wood chemically modified with styrene and glycidyl methacrylate. Journal of Applied Polymer Science. 2004. No. 93(4). Pp. 1938-1945.
  • Donato D.I., Lazzara G., Milioto S. Thermogravimetric analysis: A tool to evaluate the ability of mixtures in consolidating waterlogged archaeological woods. Journal of Thermal Analysis and Calorimetry. 2010. No. 101(3). Pp. 1085-1091.
  • Donmez Cavdar A., Mengelolu F., Karakus K. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Journal of the International Measurement Confederation. 2015. No. 60. Pp. 6-12.
  • Ebrahimzadeh P.R., Bertilsson H. Effect of impregnation on mechanosorption in wood and paper studied by dynamic mechanical analysis. Wood Science and Technology. 1998. No. 32(2). Pp. 101-118.
  • El-Sayed Y., Bandosz T.J. Acetaldehyde adsorption on nitrogen-containing activated carbons. Langmuir. 2002. No. 18(8). Pp. 3213-3218.
  • Fernandes J., Kjellow A.W., Henriksen O. Modeling and optimization of the supercritical wood impregnation process -focus on pressure and temperature. Journal of Supercritical Fluids. 2012. No. 66. Pp. 307-314.
  • Franke T., Lenz C., Herold N., Pfriem A. Investigations on Phenol/formaldehyde impregnation of beech veneer for improved plasticization and form stability. WCTE 2016 -World Conference on Timber Engineering. 2016. No. 1. Pp. 5-12.
  • Friman L., Höglund H., Högberg H., Agnemo R. Tannin-iron impregnated thermomechanical pulp. part I: Effects of extractions and heat on brightness. Nordic Pulp and Paper Research Journal. 2004. No. 19(2). Pp. 229-236.
  • Frollini E., Razera I. A.T., Meggiato J.D., Paiva J.F., Trindade W.G. Phenolic and lignophenolic matrices reinforced with vegetal fibers. 58th Congresso Anual Da ABM. 2003. No. 1. Pp. 2129-2138.
  • Ghosh S. C., Militz H., Mai C. The efficacy of commercial silicones against blue stain and mould fungi in wood. European Journal of Wood and Wood Products. 2009. No. 67(2). Pp. 159-167.
  • Gindl W., Zargar-Yaghubi F., Wimmer R. Impregnation of softwood cell walls with melamine-formaldehyde resin. Bioresource Technology. 2003. No. 87(3). Pp. 325-330.
  • Grześkowiak W. A. Evaluation of the effectiveness of the fire retardant mixture containing potassium carbonate using a cone calorimeter. Fire and Materials. 2012. No. 36(1). Pp. 75-83.
  • Habibzade S., Taghiyari H. R., Omidvar A., Roudi H. R. Effects of impregnation with styrene and nano-zinc oxide on fire-retarding, physical, and mechanical properties of poplar wood. Cerne. 2016. No. 22(4). Pp. 465-474.
  • Hansmann C., Weichslberger G., Gindl W. A two-step modification treatment of solid wood by bulk modification and surface treatment. Wood Science and Technology. 2005. No. 39(6). Pp. 502-511.
  • Hay J. N., Khan A. Environmentally friendly coatings using carbon dioxide as the carrier medium. Journal of Materials Science. 2002. No. 37(22). Pp. 4743-4752.
  • Hazarika A., Maji T. K. Strain sensing behavior and dynamic mechanical properties of carbon nanotubes/nanoclay reinforced wood polymer nanocomposite. Chemical Engineering Journal. 2014. No. 247. Pp. 33-41.
  • Hazarika A., Maji T. K. Ultraviolet resistance and other physical properties of softwood polymer nanocomposites reinforced with ZnO nanoparticles and nanoclay. Wood Material Science and Engineering. 2017. No. 12(1). Pp. 24-39.
  • Hazarika A., Mandal M., Maji T. K. Dynamic mechanical analysis, biodegradability and thermal stability of wood polymer nanocomposites. Composites Part B: Engineering. 2014. No. 60. Pp. 568-576.
  • Henriques D., de Brito J., Duarte S., Nunes L. Consolidating preservative-treated wood: Combined mechanical performance of boron and polymeric products in wood degraded by coniophora puteana. Journal of Cultural Heritage. 2014. No. 15(1). Pp. 10-17.
  • Henriques D. F., Nunes L., de Brito, J. Mechanical evaluation of timber conservation processes by bending tests. Journal of Cultural Heritage. 2013. No. 12(1). Pp. 15-19.
  • Hong S., Kim C., Lim H., Kang H. Measuring PEG retentions and EMCs of PEG impregnated softwood specimens after heat-treatment. Journal of the Korean Wood Science and Technology. 2013. No. 41(3). Pp. 173-180.
  • Ishikawa T., Horiuchi K., Shibata H., Toya K., Takeda K. Effect of pit destruction and boric compounds on flame retardancy of woods. Zairyo/Journal of the Society of Materials Science, Japan. 2003. No. 52(3). Pp. 301-308.
  • Jirouš-Rajković V., Miklečić J. Fire retardants for wood. Drvna Industrija. 2009. No. 60(2). Pp. 111-121.
  • Kazayawoko M., Balatinecz J. J., Matuana L. M. Surface modification and adhesion mechanisms in woodfiber-polypropylene composites. Journal of Materials Science. 1999. No. 34(24). Pp. 6189-6199.
  • Khan M. A., Idriss Ali K. M., Shafiur Rahman M. Swelling and thermal conductivity of wood and wood-plastic composite. Polymer -Plastics Technology and Engineering. 1997. No. 36(2). Pp. 179-187.
  • Kim S., Kim H. Anti-bacterial performance of colloidal silver-treated laminate wood flooring. International Biodeterioration and Biodegradation. 2006. No. 57(3). Pp. 155-162.
  • Konecki M., Półka M., Tuśnio N., Małoziȩć D. Effect of fire retarding agents for wood on the change of fire environment in room systems. Przemysl Chemiczny. 2012. No. 91(2). Pp. 167-172.
  • Kuo S., Bembenek R. Sorption and desorption of chromate by wood shavings impregnated with iron or aluminum oxide. Bioresource Technology. 2008. No. 99(13), Pp. 5617-5625.
  • Kupchinov B. I., Ermakov S. F., Pirnazarov R. Y. The effect of organosilicon modifiers on self-lubrication properties of wood-polymeric materials. Trenie i Iznos. 1991. No. 1(1). Pp. 63-71.
  • La H., Zhilin C., Feng F., Mizi F. Investigation of factory fire retardant treatment of eucalyptus plywood. Forest Products Journal. 2015. No. 65(7-8). Pp. 320-326.
  • Lahtela V., Kärki T. Effects of impregnation and heat treatment on the physical and mechanical properties of scots pine (pinus sylvestris) wood. Wood Material Science and Engineering. 2016. No. 11(4). Pp. 217-227.
  • Lee W., Hong S., Kang H. Effects of drying temperature and acetylation on the retention of polyethylene glycol in red pine wood disks. Journal of the Korean Wood Science and Technology. 2015. No. 43(6). Pp. 784-791.
  • Li J., Yu S., Ge M., Wei X., Qian Y., Zhou Y., Zhang W. Fabrication and characterization of biomorphic cellular C/SiC-ZrC composite ceramics from wood. Ceramics International. 2015. No. 41(6). Pp. 7853-7859.
  • Li W., Zhang Q., Zhao G. Structure and properties characterization of the flame retardant wood wallpaper. Beijing Linye Daxue Xuebao/Journal of Beijing Forestry University. 2016. No. 38(7). Pp. 91-97.
  • Liu M., Zhou J., Wang Q., Liao H., Wang F., Zhang Z. Study on combustion properties of wood-polymethyl methacrylate composites. Jianzhu Cailiao Xuebao/Journal of Building Materials. 2010. No. 13(3). Pp. 357-362.
  • Liu Y., Jiang Z., Li J., Liu Y., Ren X., Huang T. Antibacterial functionalization of cotton fabrics by electric-beam irradiation. Journal of Applied Polymer Science. 2015. No. 132(23). Pp. 15-19.
  • Lu X., Zhang M. Q., Rong M. Z., Shi G., Yang, G. C. All-plant fiber composites. I: Unidirectional sisal fiber reinforced benzylated wood. Polymer Composites. 2002. No. 23(4). Pp. 624-633.
  • Lundquist L., Marque B., Hagstrand P., Leterrier Y., Månson J. Novel pulp fibre reinforced thermoplastic composites. Composites Science and Technology. 2003. No. 63(1). Pp. 137-152.
  • Mańkowski P., Andres B. Compressive strength of wood pinus sylvestris decayed by coniophora puteana fungi and reinforced with paraloid B-72. Wood Research. 2015. No. 60(3). Pp. 409-416.
  • Marney D. C. O., Russell L. J., Mann R. Fire performance of wood (pinus radiata) treated with fire retardants and a wood preservative. Fire and Materials. 2008. No. 32(6). Pp. 357-370.
  • Medina-Gonzalez Y., Camy S., Condoret J. Cellulosic materials as biopolymers and supercritical CO2 as a green process: Chemistry and applications. International Journal of Sustainable Engineering. 2012. No. 5(1). Pp. 47-65.
  • Merk V., Chanana M., Gaan S., Burgert I. Mineralization of wood by calcium carbonate insertion for improved flame retardancy. Holzforschung. 2016. No. 70(9). Pp. 867-876.
  • Mourant D., Yang D., Roy C. Decay resistance of pf-pyrolytic oil resin-treated wood. Forest Products Journal. 2007. No. 57(5). Pp. 30-35.
  • Moya R., Rodríguez-Zúñiga A., Vega-Baudrit J., Álvarez V. Effects of adding nano-clay (montmorillonite) on performance of polyvinyl acetate (PVAc) and urea-formaldehyde (UF) adhesives in carapa guianensis, a tropical species. International Journal of Adhesion and Adhesives. 2015. No. 59. Pp. 62-70.
  • Ng L., Garnett J. L., Mohajerani S. Role of additives in wood-polymer composites. relationship to analogous radiation grafting and curing processes. Radiation Physics and Chemistry. 1999. No. 55(5-6). Pp. 633-637.
  • Percin O., Sofuoglu S. D., Uzun O. Effects of boron impregnation and heat treatment on some mechanical properties of oak (quercus petraea liebl.) wood. BioResources. 2015. No. 10(3). Pp. 3963-3978.
  • Persenaire O., Alexandre M., Degée P., Dubois P. End-grained wood/polyurethane composites, 3-isocvanate-free route. Macromolecular Materials and Engineering. 2008. No. 293(7). Pp. 581-588.
  • Persenaire O., Alexandre M., Degée P., Dubois P. End-grained wood-polyurethane composites, 2: Dimensional stability and mechanical properties. Macromolecular Materials and Engineering. 2004. No. 289(10). Pp. 903-909.
  • Persenaire O., Alexandre M., Degée P., Pirard R., Dubois P. End-grained wood-polyurethane composites, 1 synthesis, morphology and characterization. Macromolecular Materials and Engineering. 2004. No. 289(10). Pp. 895-902.
  • Petersen F. W., Van Der Plas P. J., Van Zyl C. J. The mechanism of gold lock-up in refractory wood chips. Minerals Engineering. 1997. No. 10(11). Pp. 1259-1267.
  • Petrič M. Surface modification of wood: A critical review. Reviews of Adhesion and Adhesives. 2013. No. 1(2). Pp. 216-247.
  • Pidaparti R. M. V., Johnson K. Composite lamination to wood. Polymers and Polymer Composites. 1996. No. 4(2). Pp. 125-128.
  • Ponta C. C., Tran Q. K. Consolidation of porous structures by polyacrylic acid gels. Progress in Colloid and Polymer Science. 1996. No. 102. Pp. 131-137.
  • Raj R. G., Kokta B. V., Daneault C. Modification of wood fiber surface by grafting and its effect on mechanical properties of polystyrene filled system. Die Angewandte Makromolekulare Chemie. 1989. No. 173(1). Pp. 101-110.
  • Razak S. I. A., Sharif N. F. A., Nayan N. H. M., Muhamad I. I., Yahya M. Y. Impregnation of poly (lactic acid) on biologically pulped pineapple leaf fiber for packaging materials. BioResources. 2015. No. 10(3). Pp. 4350-4359.
  • Riedlinger D.A., Sun N., Frazier C.E. Tg as an index of conversion in PMDI-impregnated wood. BioResources. 2007. No. 2(4). Pp. 605-615.
  • Schaller C., Rogez D. New approaches in wood coating stabilization. Journal of Coatings Technology Research. 2007. No. 4(4). Pp. 401-409.
  • Schaudy R. Radiation-curable impregnants for the consolidation of wooden finds and art objects. Radiation Physics and Chemistry. 1990. No. 35(1-3). Pp. 71-75.
  • Schaudy R. Radiation-curable impregnants for the consolidation of wooden finds and art objects. International Journal of Radiation Applications and Instrumentation. No. 35(1-3). Pp. 71-75.
  • Se S.M., Shaaban A., Mohd Ibrahim I. Microwave absorbing material using rubber wood sawdust. ISWTA 2011 -2011 IEEE Symposium on Wireless Technology and Applications. 2011. No. 1(2). Pp. 192-197.
  • Shi L., Zhao H., Yan Y., Tang C. Fabrication technology of open-pore porous ceramics. Cailiao Gongcheng/Journal of Materials Engineering. 2005. No. (12). Pp. 57-61.
  • Shin E.W., Cho Y.K., Shin H.Y., Lee C.Y., Chung J.S. Orthophosphate removal by al-impregnated juniperus monosperma adsorbents. Journal of Industrial and Engineering Chemistry. 2007. No. 13(3). Pp. 414-419.
  • Şolpan D., Güven O. Improvement of mechanical stability of beechwood by radiation-induced in situ copolymerization of allyl glycidyl ether with acrylonitrile and methyl methacrylate. Journal of Applied Polymer Science. 1999. No. 71(9). Pp. 1515-1523.
  • Şolpan D., Güven O. Preservation of beech and spruce wood by allyl alcohol-based copolymers. Radiation Physics and Chemistry. 1999. No. 54(6). Pp. 583-591.
  • Şolpa D., Güven O. Radiation initiated copolymerization of allyl 2,3 epoxy propyl ether with acrylonitrile and methyl methacrylate and their potential use in the preservation of wooden objects. Radiation Physics and Chemistry. 1995. No. 46(4-6 PART 1). Pp. 889-892.
  • Stirling R., Morris P. I. Potential contributions of lignans to decay resistance in western red cedar. Wood Science and Technology. 2016. No. 50(2). Pp. 399-412.
  • Teoh S. H., Chia L. H. L., Boey F. Y. C. Creep rupture of a tropical wood polymer composite. International Journal of Radiation Applications and Instrumentation. 1987. No. 29(3). Pp. 201-207.
  • Terakado O., Amano A., Hirasawa M. Explosive degradation of woody biomass under the presence of metal nitrates. Journal of Analytical and Applied Pyrolysis. 2009. No. 85(1-2), Pp. 231-236.
  • Timar M. C., Maher K., Irle M., Mihai M. D. Preparation of wood with thermoplastic properties. part 2. simplified technologies. Holzforschung. 2000. No. 54(1). Pp. 77-82.
  • Timar M. C., Sandu I. C. A., Beldean E., Sandu I. FTIR investigation of paraloid B72 as consolidant for old wooden artefacts: Principle and methods. Materiale Plastice. 2014. No. 51(4). Pp. 382-387.
  • Tondi G., Johansson M., Leijonmarck S., Trey S. Tannin based foams modified to be semi-conductive: Synthesis and characterization. Progress in Organic Coatings. 2015. No. 78. Pp. 488-493.
  • Treu A., Bardage S., Johansson M., Trey S. Fungal durability of polyaniline modified wood and the impact of a low pulsed electric field. International Biodeterioration and Biodegradation. 2014. No. 87. Pp. 26-33.
  • Trey S., Jafarzadeh S., Johansson M. In situ polymerization of polyaniline in wood veneers. ACS Applied Materials and Interfaces. 2012. No. 4(3). Pp. 1760-1769.
  • Trey S. M., Netrval J., Berglund L., Johansson M. Electron-beam-initiated polymerization of poly(ethylene glycol)-based wood impregnants. ACS Applied Materials and Interfaces. 2010. No. 2(11). Pp. 3352-3362.
  • Tsuyumoto I., Oshio T. Development of fire resistant laminated wood using concentrated sodium polyborate aqueous solution. Journal of Wood Chemistry and Technology. 2009. No. 29(4). Pp. 277-285.
  • Tyagi Y. K., Sah P. L. Characterization of thermo-oxidative and wear stability of black berry wood and its polymethylmethacrylate and polyacrylonitrile impregnated wood composites. Journal of Thermoplastic Composite Materials. 2010. No. 23(5). Pp. 597-605.
  • Van Eckeveld A., Homan W. J., Militz H. Increasing the water repellency of scots pine sapwood by impregnation with undiluted linseed oil, wood oil, coccos oil and tall oil. Holzforschung Und Holzverwertung. 2001. No. 53(6). Pp. 113-115.
  • Vobolis J., Albrektas D. Reduction of time consumption for wood impregnation. Medziagotyra. 2009. No. 15(4). Pp. 321-324.
  • Wallström L., Lindberg K. A. H. Distribution of added chemicals in the cell walls of high temperature dried and green wood of swedish pine, pinus sylvestris. Wood Science and Technology. 2000. No. 34(4). Pp. 327-336.
  • Wallström L., Lindberg K. A. H. The diffusion, size and location of added silver grains in the cell walls of swedish pine, pinus sylvestris. Wood Science and Technology. 2000. No. 34(5). Pp. 403-415.
  • Wang F., Wang Q., Wang X. Progress in research on fire retardant-treated wood and wood-based composites: A chinese perspective. Forest Products Journal. 2010. No. 60(7-8). Pp. 668-678.
  • Xie Y., Fu Q., Wang Q., Xiao Z., Militz H. Effects of chemical modification on the mechanical properties of wood. European Journal of Wood and Wood Products. 2013. No. 71(4). Pp. 401-416.
  • Ye D., Farriol X. A facile method to prepare methylcellulose from annual plants and wood using iodomethane. E-Polymers. 2005. No. 5(1). Pp. 15-24.
  • Zakaria S., Ong B. H., Van De Ven T. G. M. Lumen loading magnetic paper II: Mechanism and kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004. No. 251(1-3). Pp. 31-36.
  • Zanuttini M., Citroni M., Marzocchi V. Pattern of alkali impregnation of poplar wood at moderate conditions. Holzforschung. 2000. No. 54(6). Pp. 631-636.
  • Zhang Y., Wan H., Shu Y. Z. Characterization of sugar maple wood-polymer composites: Monomer retention and polymer retention. Holzforschung. 2005. No. 59(3). Pp. 322-329.
  • Zhang Y., Zhang S. Y., Chui Y. H., Wan H., Bousmina M. Wood plastic composites by melt impregnation: Polymer retention and hardness. Journal of Applied Polymer Science. 2006. No. 102(2). Pp. 1672-1680.
  • Zhang Y., Zhang S. Y., Yang D. Q., Wan H. Dimensional stability of wood-polymer composites. Journal of Applied Polymer Science. 2006. No. 102(6). Pp. 5085-5094.
  • Zimmer K., Larnoy E., Hoibo O. Assessment of fluid flow paths and distribution in conifers. Wood Research. 2012. No. 57(1). Pp. 1-14.
Еще
Статья обзорная