Analysis of the hydrological regime of the gulf of Ob in the freezing period using SMOS data

Автор: Tikhonov V.V., Romanov A.N., Khvostov I.V., Alekseeva T.A., Sinitskiy A.I., Tikhonova M.V., Sharkov E.A., Komarova N.Yu.

Журнал: Российская Арктика @russian-arctic

Рубрика: Общественное здоровье

Статья в выпуске: 17, 2022 года.

Бесплатный доступ

The Gulf of Ob is a unique ecosystem characterized by a complex interaction of river and sea factors. It is exposed to extremely strong seasonal pressure of highly variable temperature, insolation, biogenic load and many other factors, including anthropogenic and technogenic effects. Operational satellite data on the hydrological regime of the Gulf of Ob are crucial for the analysis of different environmental and climate processes as well as assessment of the intensity and scale of anthropogenic and technogenic impacts on the adjacent areas. This study presents an analysis of seasonal and interannual variations of brightness temperature in different parts of the Gulf of Ob in the freezing period based on SMOS (Soil Moisture and Ocean Salinity) data. It was found that in the southern part of the Gulf of Ob, the seasonal and interannual brightness temperature dynamics are similar to freshwater lakes. However, the closer to the Kara Sea the more these dynamics deteriorate and, finally, in the northern part of the Gulf, become similar to those of the central Kara Sea. During the freezing period, changes in the brightness temperature dynamics occur in different parts of the Gulf of Ob. This is explained by an increase in the salinity of water under ice. It was shown that during winter seasons, the zone of fresh and salt waters mixing (the transition zone) can shift far to the south of the Gulf of Ob. Winter shift of the transition zone was compared with climate changes in the region that determine the river runoff and the state of permafrost. The revealed patterns of brightness temperature seasonal variations in different parts of the Gulf of Ob and the associated ice cover phases can be used to assess the hydrological regime in large estuaries of the Arctic in winter, as well as climate changes in the adjacent areas on the basis of satellite microwave radiometry data.

Еще

Microwave radiometry, smos, estuary, ice cover, fresh and salt waters mixing zone

Короткий адрес: https://sciup.org/170195073

IDR: 170195073   |   DOI: 10.24412/2658-42552022-2-44-71

Список литературы Analysis of the hydrological regime of the gulf of Ob in the freezing period using SMOS data

  • Barry R. G., Gan T. Y. The Global Cryosphere. Past, Present, and Future. Cambridge University Press, 20H: 472 p. https://doi.org/10.1017/CBO9780511977947.
  • Day J. W., Rybczyk J. M. Global Change Impacts on the Future of Coastal Systems: Perverse Interactions Among Climate Change, Ecosystem Degradation, Energy Scarcity, and Population, in: Wolanski E., Day J. W. Elliott M., Ramachandran R. (Eds.), Coasts and Estuaries. The Future. Amsterdam: Elsevier, 2019: 621-639. https://doi.org/10.1016/B978-0-12-814003-1.00036-8.
  • Forbes D. L. Arctic Deltas and Estuaries: A Canadian Perspective, in: Wolanski E., Day J. W. Elliott M., Ramachandran R. (Eds.), Coasts and Estuaries. The Future. Amsterdam: Elsevier, 2019: 123-147. https://doi.org/10.1016/B978-0-12-814003-1.00008-3.
  • Jacques J.-M. St., Sauchyn D. J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophysical Research Letters. 2009, 36: L01401. doi: 10.1029/2008GL035822.
  • Makarieva O., Nesterova N., Post D. A., Sherstyukov A., Lebedeva L. Warming temperatures are impacting the hydrometeorological regime of Russian rivers in the zone of continuous permafrost. The Cryosphere. 2019, 13: 1635-1659. https://doi.org/10.5194/tc-13-1635-2019.
  • Suzuki K., Matsuo K., Yamazaki D., Ichii K., lijima Y., Papa F., Yanagi Y., Hiyama T. Hydrological Variability and Changes in the Arctic Circumpolar Tundra and the Three Largest Pan-Arctic River Basins from 2002 to 2016. Remote Sensing. 2018, 10(3): 402. https://doi.org/10.3390/ rs10030402.
  • Somers B., Walker, H.J. Arctic Hydrology, in: Wang Y. (Ed.), The Handbook of Natural Resources, Second Edition, Volume 5, Coastal and Marine Environments. CRC Press is an imprint of Taylor & Francis Group, 2020: 169-174.
  • Glaeser B. Human-Nature Relations in Flux: Two Decades of Research in Coastal and Ocean Management, in: Wolanski E., Day J. W. Elliott M., Ramachandran R. (Eds.), Coasts and Estuaries. The Future. Amsterdam: Elsevier, 2019: 641-659. https://doi.org/10.1016/B978-0-12-814003-1.00037-X.
  • Kravtsova V. I., Cherepanova E. V. Dynamics of the Yenisei and Pur River Deltas. Water Resources. 2003, 30(3): 275-282. doi:10.1023/A:1023882129348.
  • Mikhailov V. N. Gidrologiia ust'ev rek: Uchebnik. Hydrology of river mouths: Textbook. Moscow University Press, 1998: 176 p. [In Russia].
  • Gordeev V. V. Trace elements in water, suspended matter and bottom sediments of the Ob and Yenisey estuaries and the Lena Delta and in the adjacent areas of the Kara and Laptev Seas, in: Kassens H., Lisitzin A. P., Thiede J., Polyakova Ye. I., Timokhov L. A., Frolov I. E. (Eds.), System of the Laptev Sea and the Adjacent Arctic Seas: Modern and Past Environments. Moscow University Press, 2009: 202-225. [In Russia].
  • Khlebovich V. V. K biologicheskoi tipologii estuariev Sovetskogo Soiuza. On biological typology of estuaries of the USSR, in: Khlebovich V. V. (Ed.), Gidrobiologicheskie issledovaniia estuariev. Hydro biological investigations of estuaries. Proceedings of The Zoological institute. 1986, 141: 5-16. [In Russia].
  • Nikanorov A. M., Bryzgalo V. A., Kosmenko L. S., Kondakova M. Yu., Reshetnyak O. S. Antropogennaia nagruzka na ust'ia rek Rossiiskoi Arktiki. Anthropogenic impact on estuaries of the Russian Arctic rivers, in: Kotlyakov V. M., (Ed.), Poliarnaia kriosfera i vody sushi. Polar Cryosphere and Continental Waters. Moscow, Saint-Petersburg: Paulsen Editions, 2011: 288-304. [In Russia].
  • Drits A. V., Arashkevich E. G., Nedospasov A. A., Amelina A. B., Flint M. V. Structural and Functional Characteristics of Zooplankton in the Ob Estuary and Adjacent Shelf Areas of the Kara Sea in Summer. Oceanology. 2019, 59(3): 347-357. doi: 10.31857/S0030-1574593383-395.
  • Galkin S. V., Kucheruk N. V., Minin K. V., Rayskiy A. K., Goroslavskaya E. I. Macrobenthos of the Ob River Estuarine Zone and of the Adjacent Regions of the Kara Sea. Oceanology. 2010, 50(5): 793-797. doi: 10.1134/S0001437010050152.
  • Lapin S. A. Hydrological Characterization of the Ob' Inlet in the Summer and Autumn Seasons. Oceanology. 2011, 51(6): 984-993. doi:10.3390/rs11070835.
  • Lisitsyn A. P., Shevchenko V. P., Vinogradov M. E., Severina O. V., Vavilova V. V., Mitskevich I. N. Particle fluxes in the Kara Sea and Ob and Yenisey estuaries. Oceanology. 1995, 34(5): 683-693.
  • Knizhnikov A. Yu., Golubchikov S. N., Zaitseva Yu. B. Vozmozhnye ekologicheskie posledstviia realizatsii proekta «Iamal-SPG». Possible environmental consequences of the Yamal-LNG project. Energiia: ekonomika, tekhnika, ekologiia. Energy: economics, technology, ecology. 2013, 12: 35-39. [In Russia].
  • Kruk M. N. Ekonomicheskaia otsenka riskov proekta osvoeniia morskikh gazovykh mestorozhdenii Obskoi Guby. Economic development project risk assessment of offshore gas fields Ob bay. Neftegazovoe delo. Oil and gas business. 2012, 1: 230-242. [In Russia]. Available at: http://ogbus.ru/article/view/ekonomicheskaya-ocenka-riskov-proekta-osvoeniya-morskix-gazovyx-mestorozhdenij-obskoj-guby
  • Ilyin G. V. Gidrologicheskii rezhim Obskoi guby kak novoi oblasti morskogo prirodopol'zovaniia v rossiiskoi Arktike. Hydrological conditions of the Ob bay as new area of maritime wildlife management in the Russian Arctic. Nauka iuga Rossii. Science in the south of Russia. 2018, 14(2): 20-32. [In Russia]. doi: 10.23885/2500-0640-2018-14-2-20-32.
  • Gens R. Remote Sensing of Coastlines: Detection, Extraction and Monitoring. International Journal of Remote Sensing. 2010, 31(7): 1819-1836. https://doi.org/10.1080/01431160902926673.
  • Khorram S. Remote Sensing of Salinity in the San Francisco Bay Delta. Remote Sensing of Environment. 1982, 12(1): 15-22. https://doi.org/10.1016/0034-4257(82)90004-9.
  • Klemas V. V. Sensors and Techniques for Observing Coastal Ecosystems, in: Yang, X. (Ed.), Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management. Berlin: Springer, 2009: 17-44. doi: 10.1007/978-3-540-88183-4_2.
  • Kuenzer C., Heimhuber V., Huth J., Dech S. Remote Sensing for the Quantification of Land Surface Dynamics in Large River Delta Regions — A Review. Remote Sensing. 2019, 11(17): 1985. doi https://doi.org/10.3390/rs11171985.
  • Yang X. Remote Sensing, Geospatial Technologies and Coastal Ecosystems, in: Yang, X. (Ed.), Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management. Berlin: Springer, 2009: 1-14. doi: 10.1007/978-3-540-88183-4_1.
  • Cui B., Li X. Y. Coastline Change of the Yellow River Estuary and Its Response to the Sediment and Runoff (1976-2005). Geomorphology. 2011, 127: 32-40. https://doi.org/10.1016/]. geomorph.2010.12.001.
  • Fan H., Huang H., Zeng T. Q. Wang K. River Mouth Bar Formation, Riverbed Aggradation and Channel Migration in the Modern Huanghe (Yellow) River Delta, China. Geomorphology. 2006, 74: 124-136. https://doi.org/10.1016/j.geomorph.2005.08.015.
  • Li X., Damen M. Coastline Change Detection with Satellite Remote Sensing for Environmental Management of the Pearl River Estuary, China. Journal of Marine Systems. 2010, 82: 54-61. doi: 10.1016/jjmarsys.2010.02.005.
  • Liu H. Shoreline Mapping and Coastal Change Studies Using Remote Sensing Imagery and LIDAR Data, in: Yang, X. (Ed.), Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management. Berlin: Springer, 2009: 297-322. doi: 10.1007/978-3-540-88183-4_13.
  • Petropoulos G. P., Kalivas D. P., Griffiths H. M., Dimou P. P. Remote Sensing and GIS Analysis for Mapping Spatio-Temporal Changes of Erosion and Deposition of Two Mediterranean River Deltas: The Case of the Axios and Aliakmonas Rivers, Greece. International Journal of Applied Earth Observation and Geoinformation. 2015, 35: 217-228. https://doi.org/10.1016/]'. jag.2014.08.004.
  • Hori M. Near-daily monitoring of surface temperature and channel width of the six largest Arctic rivers from space using GCOM-C/SGLI. Remote Sensing of Environment. 2021, 263: 112538. https://doi.org/10.1016/]' .rse.2021.112538.
  • Pavelsky T. M., Smith L. C. Spatial and Temporal Patterns in Arctic River Ice Breakup Observed with MODIS and AVHRR Time Series. Remote Sensing of Environment. 2004, 93(3): 328-338. https://doi.org/10.1016/jj.rse.2004.07.018.
  • Klok L., van Harmelen T., Janssen S. Urban Heat and Heat Stress in Rotterdam. Proceedings of the Deltas in Times of Climate Change. International Conference. Rotterdam, The Netherlands, 29 September - 1 October 2010. 2010: 141-142.
  • Antonova S., Kaab A., Heim B., Langer M., Boike J. Spatio-temporal variability of X-band radar backscatter and coherence over the Lena River Delta, Siberia. Remote Sensing of Environment. 2016, 182: 169-191. https://doi.org/10.1016/jj.rse.2016.05.003.
  • Grings F., Salvia M., Karszenbaum H., Ferrazzoli P., Kandus P., Perna P. Exploring the Capacity of Radar Remote Sensing to Estimate Wetland Marshes Water Storage. Journal of Environmental Management. 2008, 90: 2189-2198. https://doi.org/10.1016/j. jenvman.2007.06.029.
  • Omari K., Chenier R., Touzi R., Sagram M. Investigation of C-Band SAR Polarimetry for Mapping a High-Tidal Coastal Environment in Northern Canada. Remote Sensing. 2020, 12(12): 1941. https://doi.org/10.3390/rs12121941.
  • Ottinger M., Kuenzer C. Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review. Remote Sensing. 2020, 12(14): 2228. https://doi.org/10.3390/rs12142228.
  • Syvitski J. P. M., Overeem I., Brakenridge G. R., Hannon M. Floods, Floodplains, Delta Plains - A Satellite Imaging Approach. Sedimentary Geology. 2012, 267-268: 1-14. htps://doi. org/10.1016/j.sedgeo.2012.05.014.
  • Abascal-Zorrilla N., Vantrepotte V., Huybrechts N., Ngoc D. D., Anthony E. J., Gardel A. Dynamics of the Estuarine Turbidity Maximum Zone from Landsat-8 Data: The Case of the Maroni River Estuary, French Guiana. Remote Sensing. 2020, 12: 2173. https://doi. org/10.3390/rs12132173.
  • Baban S. M. J. Detecting water quality parameters in the Norfolk Broads, U.K., using Landsat imagery. International Journal of Remote Sensing. 1993, 14(7): 1247-1267. doi: 10.1080/01431169308953955.
  • Lavrova O. Y., Soloviev D. M., Mityagina M. I., Strochkov A. Y., Bocharova T. Y. Revealing the influence of various factors on concentration and spatial distribution of suspended matter based on remote sensing data. Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2015, Toulouse, France, 21-24 September 2015. SPIE — International Society for Optics and Photonics, Bellingham. 2015, 9638: 96380D. doi: 10.1117/12.2193905.
  • Lavrova O. Y., Soloviev D. M., Strochkov M. A., Bocharova T. Y., Kashnitsky A. V. River plumes investigation using Sentinel-2A MSI and Landsat-8 OLI data. Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2016, Edinburgh, UK, 26-29 September 2016. SPIE — International Society for Optics and Photonics, Bellingham. 2016, 9999: 99990G. doi: 10.1117/12.2241312.
  • Nazirova K., Lavrova O., Krayushkin E. Features of monitoring near the mouth zones by contact and contactless methods. Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2019, Strasbourg, France, 9-12 September 2019. SPIE — International Society for Optics and Photonics, Bellingham. 2019, 11150: 111500H. https://doi.org/10.1117/12.2533165.
  • Nazirova K., Alferyeva Y., Lavrova O., Shur Y., Soloviev D., Bocharova T., Strochkov A. Comparison of In Situ and Remote-Sensing Methods to Determine Turbidity and Concentration of Suspended Matter in the Estuary Zone of the Mzymta River, Black Sea. Remote Sensing. 2021, 13: 143. https://doi.org/10.3390/rs13010143.
  • Ray R., Mandal S., Dhara A. Environmental monitoring of estuaries: Estimating and mapping various environmental indicators in Matla estuarine complex, using Landsat TM digital data. Intern. J. Geomatics and Geosciences. 2013, 3(3): 570-581.
  • Tarpanelli A., Iodice F., Brocca L., Restano M., Benveniste J. River Flow Monitoring by Sentinel-3 OLCI and MODIS: Comparison and Combination. Remote Sensing. 2020, 12: 3867. https://doi.org/10.3390/rs12233867.
  • Wei Z., Jia K., Liu P., Jia X., Xie Y., Jiang Z. Large-Scale River Mapping Using Contrastive Learning and Multi-Source Satellite Imagery. Remote Sensing. 2021, 13(15): 2893. https:// doi.org/10.3390/rs13152893.
  • Tedesco M. Remote sensing of the Cryosphere. Oxford: JohnWiley & Sons, 2015. 404 p. doi: 10.1002/9781118368909.
  • Akimov D. B., Johannessen O. M., Mitnik L. M., Volkov V. A. Satellite radar signatures of fronts in the Ob and Yenisey estuaries in the Kara Sea. Proceedings IEEE International Geoscience and Remote Sensing Symposium, IGARSS'99. 1999, 5: 2542-2544. doi: 10.1109/ IGARSS.1999.771570.
  • Melentyev V. V., Johannessen O. M, Sandven S., Pettersson L. H. Ice Regime Study for the Ob-Yenisey Estuaries Using ERS SAR Data. Proceedings IEEE International Geoscience and Remote Sensing Symposium, IGARSS'99. 1999, 2: 1037-1039. doi: 10.1109/IGARSS.1999.774525.
  • Melentyev V., Bobylev L., Pettersson L., Sandven S. Winter hydrology and ice regime of the Ob - Yenisey estuaries: results of satellite SAR comprehensive studies. Proceedings 31st International Symposium on Remote Sensing of Environment (ISRSE), Saint Petersburg, 20-24 May. 2005.
  • Sharkov E. A. Passive Microwave Remote Sensing of the Earth: Physical Foundations. Berlin: Springer/PRAXIS, 2003. 656 p.
  • Kugler Z., Nghiem S. V., Brakenridge G. R. L-Band Passive Microwave Data from SMOS for River Gauging Observations in Tropical Climates. Remote Sensing. 2019, 11(7): 835. https:// doi.org/10.3390/rs11070835.
  • Papa F., Prigent C., Rossow W. B. Monitoring Flood and Discharge Variations in the Large Siberian Rivers from a Multi-Satellite Technique. Surveys in Geophysics. 2008, 29(4): 297317. doi: 10.1007/s10712-008-9036-0.
  • Stippel S. J., Hamilton S. K., Melack J. M., Choudhury B. J. Determination of inundation area in the Amazon River floodplain using SMMR 37 GHz polarization difference. Remote Sensing of Environment. 1994, 48: 70-76. https://doi.org/10.1016/0034-4257(94)90115-5.
  • Du J., Kimball J. S., Jones L. A., Watts J. D. Implementation of satellite based fractional water cover indices in the pan-Arctic region using AMSR-E and MODIS. Remote Sensing of Environment. 2016, 184: 469-481. https://doi.org/10.1016/j.rse.2016.07.029.
  • Khan S. I., Hong Y., Vergara H. J., Gourley J. J., Brakenridge G. R., Groeve T. D., Flamig Z. L., Policelli F., Yong B. Microwave Satellite Data for Hydrologic Modeling in Ungauged Basins. IEEE Geoscience and Remote Sensing Letters. 2012, 9(4): 663-667. doi: 10.1109/ LGRS.2011.2177807.
  • Temimi M., Leconte R., Brissette F., Chaouch N. Flood monitoring over the Mackenzie River Basin using passive microwave data. Remote Sensing of Environment. 2005, 98: 344-355. https://doi.org/10.1016/j.rse.2005.06.010.
  • Umbert M., Gabarro C., Olmedo E., Gongalves-Araujo R., Guimbard S., Martinez J. Using Remotely Sensed Sea Surface Salinity and Colored Detrital Matter to Characterize Freshened Surface Layers in the Kara and Laptev Seas during the Ice-Free Season. Remote Sensing. 2021, 13: 3828. https://doi.org/10.3390/rs13193828.
  • Tikhonov V. V., Khvostov I. V., Romanov A. N., Sharkov E. A. Analysis of changes in the ice cover of freshwater lakes by SMOS data. Izvestiya, Atmospheric and Oceanic Physics. 2018, 54(9): 1135-1140. doi: 10.1134/S0001433818090384.
  • Tikhonov V. V., Khvostov I. V., Romanov A. N., Sharkov E. A. Theoretical study of ice cover phenology at large freshwater lakes based on SMOS MIRAS data. The Cryosphere. 2018, 12(8): 2727-2740. doi: 10.5194/tc-12-2727-2018.
  • Tikhonov V. V., Khvostov I. V., Romanov A. N., Sharkov E. A., Boyarskii D. A., Komarova N. Yu., Sinitskiy A. I. Features of the Intrinsic L-Band Radiation of the Gulf of Ob during the Freeze-Up Period. Izvestiya, Atmospheric and Oceanic Physics. 2020, 56(9): 9362-949. doi: 10.1134/S0001433820090236.
  • Lapin S. A. Prostranstvenno-vremennaia izmenchivost' gidrologo-gidrokhimicheskikh kharakteristik Obskoi guby kak osnova otsenki ee bioproduktivnosti. Spatial and temporal variability of the hydro-hydrochemical characteristics of the Ob Bay as a basis for assessing its bioproductivity. PhD thesis. Russian Federal Research Institute of Fisheries and Oceanography. Moscow. 2012: 128 p. [In Russia].
  • Voynov G. N., Nalimov Yu. V., Piskun A. A., Stanovoy V. V., Usankina G. E. Osnovnye cherty gidrologicheskogo rezhima Obskoi i Tazovskoi gub (led, urovni, struktura vod). The main features of the hydrological regime of the Ob and Taz bays (ice, levels, water structure). Saint-Petersburg: Nestor-History, 2017. 192 p. [In Russia].
  • Dolgopolova E. N. Rol' mnogoletnemerzlykh porod v formirovanii gidrologo-morfologicheskogo rezhima ust'ev rek vodosbora Severnogo Ledovitogo okeana. The role of permafrost in the formation of the hydrological and morphological regime of river mouths in the Arctic Ocean watershed area. Arktika: ekologiia i ekonomika. Arctic: Ecology and Economy. 2018, 32(4): 70-85. [In Russian]. doi: 10.25283/2223-4594-2018-4-70-85.
  • Bulavina A. S. Klimaticheskie faktory formirovaniia stoka reki Ob'. Climatic factors of the Ob River runoff formation. Nauka iuga Rossii. Science in the south of Russia. 2020, 16(1): 45-54. [In Russia]. https://doi.org/10.7868/S25000640200106.
  • Gutierrez A., Castro R., Vieira P, Lopes G., Barbosa J. SMOS L1 Processor L1c Data Processing Model. Portugal: DEIMOS Engenharia. 2014.
  • Sahr K., White D., Kimerling A. J. Geodesic Discrete Global Grid System. Cartography and Geographic Information Science. 2003, 30(2): 121-134. https://doi. org/10.1559/152304003100011090.
  • Andreev O. M., Drabenko D. V., Vinogradov R. A., Orlova E. U. Vliianie potepleniia klimata na prochnostnye kharakteristiki l'da v Obskoi gube. Influence of climate warming on the strength characteristics of ice in th e Ob Bay. Led i sneg. Ice and Snow. 2019, 59(4): 539-545. [In Russia]. https://doi.org/10.15356/2076-6734-2019-4-409.
  • Tikhonov V. V., Boyarskii D. A., Sharkov E. A., Raev M. D., Repina I. A., Ivanov V. V, Alexeeva T. A., Komarova N. Yu. Microwave Model of Radiation from the Multilayer "Ocean-atmosphere" System for Remote Sensing Studies of the Polar Regions. Progress In Electromagnetics Research B. 2014, 59: 123-133. doi: 10.2528/PIERB14021706.
  • Demir O., Johnson J. T., Jezek K. C., Andrews M. J., Ayotte K., Spreen G., Hendricks S., Kaleschke L., Oggier M., Granskog M. A., Fong A., Hoppmann M., Matero I., Scholz D. Measurements of 540-1740 MHz Brightness Temperatures of Sea Ice During the Winter of the MOSAiC Campaign. IEEE Transactions on Geoscience and Remote Sensing. 2022, 60: 5302011. doi: 10.1109/TGRS.2021.3105360.
  • Boyarskii D. A., Tikhonov V. V., Kleeorin N. I., Mirovskii V. G. Inclusion of scattering losses in the models of the effective permittivity of dielectric mixtures and applications to wet snow. J. of Electromagnetic Waves and Applications. 1994, 8(11): 1395-1410. doi: 10.1163/156939394X00281.
  • Crabeck O., Galley R., Delille B., Else B., Geilfus N.-X., Lemes M., Roches M. D., Francus P., Tison J.-L., Rysgaard S. Imaging air volume fraction in sea ice using non-destructive X-ray tomography. The Cryosphere. 2016, 10(3): 1125-1145. doi: https://doi.org/10.5194/tc-10-1125-2016.
  • Frantz C. M., Light B., Farley S. M., Carpenter S., Lieblappen R., Courville Z., Orellana M. V., Junge K. Physical and optical characteristics of heavily melted "rotten" Arctic Sea ice. The Cryosphere. 2019, 13: 775-793. doi: https://doi.org/10.5194/tc-13-775-2019.
  • Gray D. M., Male D. H. (Eds.). Handbook of Snow. Toronto: Pergamon Press, 1981. 776 p.
  • Lepparanta M. Freezing of Lakes and the Evolution of their Ice Cover. Chichester: Springer, 2015. 301 p. doi: 10.1007/978-3-642-29081-7.
  • Petrich C., Eicken H. Growth, Structure and Properties of Sea Ice, in: Thomas D. N., Dieckmann G. S. (Eds.), Sea Ice. Second Edition. Chichester: Blackwell Publishing Ltd, 2010: 23-77.
  • Singh V. P., Singh P., Haritashya U. K. (Eds.). Encyclopedia of Snow, Ice and Glaciers. Dordrecht: Springer, 2011. 1253 p. https://doi.org/10.1007/978-90-481-2642-2.
  • Timco G. W., Frederking R. M. W. A review of sea ice density. Cold Regions Science and Technology. 1996, 24: 1-6. https://doi.org/10.1016/0165-232X(95)00007-X.
  • Ulaby F. T., Long D. G. Microwave Radar and Radiometric Remote Sensing. Univ. of Michigan Press, 2014. 984 p.
  • Polukhin A. A., Makkaveev P. N. Features of the Continental Runoff Distribution over the Kara Sea. Oceanology. 2017, 57(1): 19-30. https://doi.org/10.1134/S0001437017010143.
  • Zatsepin A. G., Zavialov P. O., Kremenetskiy V. V., Poyarkov S. G., Soloviev D. M. The Upper Desalinated Layer in the Kara Sea. Oceanology. 2010, 50(5): 657-667. doi: 10.1134/ S0001437010050036.
  • Naoki K., Ukita J., Nishio F., Nakayama M., Comiso J. C., Gasiewski A. Thin sea ice thickness as inferred from passive microwave and in situ observations. Journal of Geophysical Research. 2008, 113: C02S16. doi: 10.1029/2007JC004270.
  • Stanovoy V. V. Izmenchivost' termokhalinnoi struktury vody v estuariiakh Karskogo moria. Variability of thermohaline water structure in the Kara Sea estuaries. Trudy Arkticheskogo I antarkticheskogo nauchnoy-issledovatel'skogo instituta. Proceedings of the AARI. 2008, 448: 103-130. [In Russia].
  • Kerr Y. H., Waldteufel P., Wigneron J.-P., Delwart S., Cabot F., Boutin J., Escorihuela M. J., Font J., Reul N., Gruhier C., Juglea S. E., Drinkwater M. R., Hahne A., Martin-Neira M., Mecklenburg S. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle. Proceeding of the IEEE. 2010, 98(5): 666-687. doi: 10.1109/JPROC.2010.2043032.
  • Emery W., Camps A. Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Land and Cryosphere Application. Amsterdam: Elsevier Inc, 2017. 856 p. https://doi.org/10.1016/ C2015-0-04517-8.
  • Kokelj S. V., Kokoszka J., van der Sluijs J., Rudy A. C. A., Tunnicliffe J., Shakil S., Tank S. E., Zolkos S. Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks. The Cryosphere. 2021, 15(7): 3059-3081. https://doi.org/10.5194/tc-15-3059-2021.
  • Lin H., Cheng X., Zheng L., Peng X., Feng W., Peng F. Recent Changes in Groundwater and Surface Water in Large Pan-Arctic River Basins. Remote Sensing. 2022, 14(3): 607. https:// doi.org/10.3390/rs14030607.
  • Suzuki K., Park H., Makarieva O., Kanamori H., Hori M., Matsuo K., Matsumura S., Nesterova N., Hiyama T. Effect of Permafrost Thawing on Discharge of the Kolyma River, Northeastern Siberia. Remote Sensing. 2021, 13(21): 4389. https://doi.org/10.3390/rs13214389.
  • Walvoord M.A., Kurylyk B.L. Hydrologic Impacts of Thawing Permafrost-A Review. Vadose Zone Journal. 2016, 6(15). https://doi.org/10.2136/vzj2016.01.0010.
  • Ran Y., Li X., Cheng G., Che J., Juha A., Olli K., Jan H., Miska L., Jin H., Jaroslav O., Masahiro H., Yu Q., Chang X. New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere. Earth System Science Data. 2022, 14: 865-884. https://doi.org/10.5194/essd-14-865-2022.
Еще
Статья научная