Ангиогенез при раке эндометрия: клиническое и биологическое значение

Автор: Майбородин И.В., Гончаров М.А., Шевела А.И., Красильников С.Э., Шумейкина А.О., Майбородина В.И.

Журнал: Сибирский онкологический журнал @siboncoj

Рубрика: Обзоры

Статья в выпуске: 4 т.23, 2024 года.

Бесплатный доступ

Цель исследования - обобщение имеющихся данных об особенностях васкуляризации эндометриоидной аденокарциномы (ЭАК). Материал и методы. Поиск соответствующих источников был произведен в базе данных «PubMed» по ключевым словам «endometrium + cancer + angiogenesis» и«endometrium + cancer + angiogenesis + lymph». Из выбранных источников в данный обзор включено 78 публикаций.

Опухолевый ангиогенез, васкуляризация опухоли, эндометриоидная аденокарци- нома, фактор роста эндотелия сосудов, факторы ангиогенеза, прогностические факторы, лимфати- ческие узлы

Короткий адрес: https://sciup.org/140307095

IDR: 140307095   |   DOI: 10.21294/1814-4861-2024-23-4-172-185

Список литературы Ангиогенез при раке эндометрия: клиническое и биологическое значение

  • Abdelmaksoud N.M., El-Mahdy H.A., Ismail A., Elsakka E.G.E., El-Husseiny A.A., Khidr E.G., Ali E.M., Rashed M.H., El-Demerdash F.E., Doghish A.S. The role of miRNAs in the pathogenesis and therapeutic resistance of endometrial cancer: a spotlight on the convergence of signaling pathways. Pathol Res Pract. 2023; 244. https://doi.org/10.1016/j.prp.2023.154411.
  • Khan N.A., Elsori D., Rashid G., Tamanna S., Chakraborty A., Farooqi A., Kar A., Sambyal N., Kamal M.A. Unraveling the relationship between the renin-angiotensin system and endometrial cancer: a comprehensive review. Front Oncol. 2023; 13. https://doi.org/10.3389/fonc.2023.1235418.
  • Al-Kuraishy H.M., Al-Maiahy T.J., Al-Gareeb A.I., Alexiou A., Papadakis M., Saad H.M., Batiha G.E. The possible role furin and furin inhibitors in endometrial adenocarcinoma: A narrative review. Cancer Rep (Hoboken). 2024; 7(1). https://doi.org/10.1002/cnr2.1920.
  • Carmeliet P., Jain R.K. Angiogenesis in cancer and other diseases. Nature. 2000; 407(6801): 249-57. https://doi.org/10.1038/35025220.
  • Yetkin-Arik B., Kastelein A.W., Klaassen I., Jansen C.H.J.R., Latul Y.P., Vittori M., Biri A., Kahraman K., Griffioen A.W., Amant F., Lok C.A.R., Schlingemann R.O., van Noorden C.J.F. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy. Biochim Biophys Acta Rev Cancer. 2021; 1875(1). https://doi.org/10.1016/j.bbcan.2020.188446.
  • Semenza G.L. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3(10): 721-32. https://doi.org/10.1038/nrc1187.
  • Bhosale N.M., Arakeri S.U., Reddy A.K., Mudanur S.R. Endometrial blood vessel morphometry in patients presenting with abnormal uterine bleeding. Indian J Pathol Microbiol. 2022; 65(4): 844-50. https://doi.org/10.4103/ ijpm.ijpm_89_21.
  • Pijnenborg J.M., Wijnakker M., Hagelstein J., Delvoux B., Groothuis P.G. Hypoxia contributes to development of recurrent endometrial carcinoma. Int J Gynecol Cancer. 2007; 17(4): 897-904. https://doi.org/10.1111/j.1525-1438.2007.00893.x.
  • Yunusova N.V., Kondakova I.V., Kolomiets L.A., Afanas’ev S.G., Kishkina A.Y., Spirina L.V. The role of metabolic syndrome variant in the malignant tumors progression. Diabetes Metab Syndr. 2018; 12(5): 807-12. https://doi.org/10.1016/j.dsx.2018.04.028.
  • Wang P.P., He X.Y., Wang R., Wang Z., Wang Y.G. High leptin level is an independent risk factor of endometrial cancer: a meta-analysis. Cell Physiol Biochem. 2014; 34(5): 1477-84. https://doi.org/10.1159/000366352.
  • Ellis P.E., Barron G.A., Bermano G. Adipocytokines and their relationship to endometrial cancer risk: A systematic review and meta-analysis. Gynecol Oncol. 2020; 158(2): 507-16. https://doi.org/10.1016/j.ygyno.2020.05.033.
  • Boroń D., Nowakowski R., Grabarek B.O., Zmarzły N., Opławski M. Expression Pattern of Leptin and Its Receptors in Endometrioid Endometrial Cancer. J Clin Med. 2021; 10(13): 2787. https://doi.org/10.3390/jcm10132787.
  • Kang Y.E., Kim J.M., Joung K.H., Lee J.H., You B.R., Choi M.J., Ryu M.J., Ko Y.B., Lee M.A., Lee J., Ku B.J., Shong M., Lee K.H., Kim H.J. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction. PLoS One. 2016; 11(4). https://doi.org/10.1371/journal.pone.0154003.
  • Zhou W., Guo S., Gonzalez-Perez R.R. Leptin pro-angiogenic signature in breast cancer is linked to IL-1 signalling. Br J Cancer. 2011; 104(1): 128-37. https://doi.org/10.1038/sj.bjc.6606013.
  • Gonzalez-Perez R.R., Lanier V., Newman G. Leptin’s Pro-Angiogenic Signature in Breast Cancer. Cancers (Basel). 2013; 5(3): 1140-62. https://doi.org/10.3390/cancers5031140.
  • Park H.Y., Kwon H.M., Lim H.J., Hong B.K., Lee J.Y., Park B.E., Jang Y., Cho S.Y., Kim H.S. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001; 33(2): 95-102. https://doi.org/10.1038/emm.2001.17.
  • Guo S., Liu M., Wang G., Torroella-Kouri M., Gonzalez-Perez R.R. Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochim Biophys Acta. 2012; 1825(2): 207-22. https://doi.org/10.1016/j.bbcan.2012.01.002.
  • Baumann K.E., Siamakpour-Reihani S., Dottino J., Dai Y., Bentley R., Jiang C., Zhang D., Sibley A.B., Zhou C., Berchuck A., Owzar K., Bae-Jump V., Secord A.A. High-fat diet and obesity are associated with differential angiogenic gene expression in epithelial ovarian cancer. Gynecol Oncol. 2023; 179: 97-105. https://doi.org/10.1016/j.ygyno.2023.11.002.
  • Michalczyk K., Niklas N., Rychlicka M., Cymbaluk-Płoska A. The Influence of Biologically Active Substances Secreted by the Adipose Tissue on Endometrial Cancer. Diagnostics (Basel). 2021; 11(3): 494. https://doi.org/10.3390/diagnostics11030494.
  • Yu Z., Zhang Q., Wei S., Zhang Y., Zhou T., Zhang Q., Shi R., Zinovkin D., Pranjol Z.I., Zhang J., Wang H. CD146+CAFs promote progression of endometrial cancer by inducing angiogenesis and vasculogenic mimicry via IL-10/JAK1/STAT3 pathway. Cell Commun Signal. 2024; 22(1): 170. https://doi.org/10.1186/s12964-024-01550-9.
  • Rotin D.L., Titov K.S., Kazakov A.M. Vaskulogennaya mimikriya pri melanome: molekulyarnye mekhanizmy i klinicheskoe znachenie. Rossiiskii bioterapevticheskii zhurnal. 2019; 18(1): 16-24. https://doi.org/10.17650/1726-9784-2019-18-1-16-24.
  • Lapkina E.Z., Esimbekova A.R., Ruksha T.G. Vaskulogennaya mimikriya. Arkhiv patologii. 2023; 85(6): 62-9. https://doi.org/10.17116/patol20238506162.
  • Hashimoto I., Kodama J., Seki N., Hongo A., Miyagi Y., Yoshinouchi M., Kudo T. Macrophage infiltration and angiogenesis in endometrial cancer. Anticancer Res. 2000; 20(6C): 4853-6.
  • Soeda S., Nakamura N., Ozeki T., Nishiyama H., Hojo H., Yamada H., Abe M., Sato A. Tumor-associated macrophages correlate with vascular space invasion and myometrial invasion in endometrial carcinoma. Gynecol Oncol. 2008; 109(1): 122-8. https://doi.org/10.1016/j.ygyno.2007.12.033.
  • Espinosa I., José Carnicer M., Catasus L., Canet B., D’angelo E., Zannoni G.F., Prat J. Myometrial invasion and lymph node metastasis in endometrioid carcinomas: tumor-associated macrophages, microvessel density, and HIF1A have a crucial role. Am J Surg Pathol. 2010; 34(11): 1708-14. https://doi.org/10.1097/PAS.0b013e3181f32168.
  • Pugh C.W., Ratcliffe P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003; 9(6): 677-84. https://doi.org/10.1038/nm0603-677.
  • Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Antiand Pro-Angiogenic Therapies. Genes Cancer. 2011; 2(12): 1097-105. https://doi.org/10.1177/1947601911423031.
  • Nishida N., Yano H., Nishida T., Kamura T., Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006; 2(3): 213-9. https://doi.org/10.2147/vhrm.2006.2.3.213.
  • Wang J., Taylor A., Showeil R., Trivedi P., Horimoto Y., Bagwan I., Ewington L., Lam E.W., El-Bahrawy M.A. Expression profiling and significance of VEGF-A, VEGFR2, VEGFR3 and related proteins in endometrial carcinoma. Cytokine. 2014; 68(2): 94-100. https://doi.org/10.1016/j.cyto.2014.04.005.
  • Bottaro D.P., Liotta L.A. Cancer: Out of air is not out of action. Nature. 2003; 423(6940): 593-5. https://doi.org/10.1038/423593a.
  • Guo S., Colbert L.S., Fuller M., Zhang Y., Gonzalez-Perez R.R. Vascular endothelial growth factor receptor-2 in breast cancer. Biochim Biophys Acta. 2010; 1806(1): 108-21. https://doi.org/10.1016/j.bbcan.2010.04.004.
  • Mori H., Nishida H., Kusaba T., Kawamura K., Oyama Y., Daa T. Clinicopathological correlations of endometrioid and clear cell carcinomas in the uterus and ovary. Medicine (Baltimore). 2023; 102(37). https://doi.org/10.1097/MD.0000000000035301.
  • Wang X.X., Hua T., Wang H.B. Estrogen receptor-related receptor γ uppresses hypoxia-induced angiogenesis by regulating VEGFA in endometrial cancer. Gynecol Endocrinol. 2023; 39(1). https://doi.org/10.1080/09513590.2023.2264411.
  • Mieszało K., Ławicki S., Szmitkowski M. Przydatność oznaczania metaloproteinaz (MMPs) i ich inhibitorów (TIMPs) w diagnostyce nowotworów narządu rodnego [The utility of metalloproteinases (MMPs) and their inhibitors (TIMPs) in diagnostics of gynecological malignancies]. Pol Merkur Lekarski. 2016; 40(237): 193-7. Polish.
  • Ewington L., Taylor A., Sriraksa R., Horimoto Y., Lam E.W., El-Bahrawy M.A. The expression of interleukin-8 and interleukin-8 receptors in endometrial carcinoma. Cytokine. 2012; 59(2): 417-22. https://doi.org/10.1016/j. cyto.2012.04.036.
  • Kotowicz B., Fuksiewicz M., Jonska-Gmyrek J., Berezowska A., Radziszewski J., Bidzinski M., Kowalska M. Clinical significance of pretreatment serum levels of VEGF and its receptors, IL-8, and their prognostic value in type I and II endometrial cancer patients. PLoS One. 2017; 12(10). https://doi.org/10.1371/journal.pone.0184576.
  • Kim C.S., Park H.S., Kawada T., Kim J.H., Lim D., Hubbard N.E., Kwon B.S., Erickson K.L., Yu R. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond). 2006; 30(9): 1347-55. https://doi.org/10.1038/sj.ijo.0803259.
  • Ozalp S., Yalcin O.T., Acikalin M., Tanir H.M., Oner U., Akkoyunlu A. Microvessel density (MVD) as a prognosticator in endometrial carcinoma. Eur J Gynaecol Oncol. 2003; 24(3-4): 305-8.
  • Wang J.Z., Xiong Y.J., Man G.C.W., Chen X.Y., Kwong J., Wang C.C. Clinicopathological and prognostic significance of blood microvessel density in endometrial cancer: a meta-analysis and subgroup analysis. Arch Gynecol Obstet. 2018; 297(3): 731-40. https://doi.org/10.1007/s00404-018-4648-1.
  • Kaku T., Kamura T., Kinukawa N., Kobayashi H., Sakai K., Tsuruchi N., Saito T., Kawauchi S., Tsuneyoshi M., Nakano H. Angiogenesis in endometrial carcinoma. Cancer. 1997; 80(4): 741-7. https://doi.org/10.1002/(sici)1097-0142(19970815)80:4<741::aid-cncr13-3.0.co;2-t.
  • Kilinç E., Bahar A.Y. The Value of Intratumoral and Extratumoral Microvessel Density for the Tumor-dominated Area in the Endometrial Carcinoma. Appl Immunohistochem Mol Morphol. 2022; 30(7): 501-8. https://doi.org/10.1097/PAI.0000000000001044.
  • Watanabe M., Aoki Y., Kase H., Tanaka K. Heparanase expression and angiogenesis in endometrial cancer. Gynecol Obstet Invest. 2003; 56(2): 77-82. https://doi.org/10.1159/000072821.
  • Wagatsuma S., Konno R., Sato S., Yajima A. Tumor angiogenesis, hepatocyte growth factor, and c-Met expression in endometrial carcinoma. Cancer. 1998; 82(3): 520-30. https://doi.org/10.1002/(sici)1097-0142-(19980201)82:3<520::aid-cncr14-3.0.co;2-3.
  • Ozuysal S., Bilgin T., Ozan H., Kara H.F., Oztürk H., Ercan I. Angiogenesis in endometrial carcinoma: correlation with survival and clinicopathologic risk factors. Gynecol Obstet Invest. 2003; 55(3): 173-7. https://doi.org/10.1159/000071533.
  • Erdem O., Erdem M., Dursun A., Akyol G., Erdem A. Angiogenesis, p53, and bcl-2 expression as prognostic indicators in endometrial cancer: comparison with traditional clinicopathologic variables. Int J Gynecol Pathol. 2003; 22(3): 254-60. https://doi.org/10.1097/01.PGP.0000070850.25718. A5.
  • Drocaş I., Crăiţoiu Ş., Stepan A.E., Iliescu D.G., Drocaş I.A., Stepan M.D. The analysis of hormonal status and vascular and cell proliferation in endometrioid endometrial adenocarcinomas. Rom J Morphol Embryol. 2022; 63(1): 113-20. https://doi.org/10.47162/RJME.63.1.11.
  • Guşet G., Costi S., Lazăr E., Dema A., Cornianu M., Vernic C., Păiuşan L. Expression of vascular endothelial growth factor (VEGF) and assessment of microvascular density with CD34 as prognostic markers for endometrial carcinoma. Rom J Morphol Embryol. 2010; 51(4): 677-82.
  • Erdem O., Taskiran C., Onan M.A., Erdem M., Guner H., Ataoglu O. CD105 expression is an independent predictor of survival in patients with endometrial cancer. Gynecol Oncol. 2006; 103(3): 1007-11. https://doi.org/10.1016/j. ygyno.2006.06.010.
  • Saad R.S., Jasnosz K.M., Tung M.Y., Silverman J.F. Endoglin (CD105) expression in endometrial carcinoma. Int J Gynecol Pathol. 2003; 22(3): 248-53. https://doi.org/10.1097/01.PGP.0000070852.25718.37.
  • Ferrara N., Kerbel R.S. Angiogenesis as a therapeutic target. Nature. 2005; 438(7070): 967-74. https://doi.org/10.1038/nature04483.
  • Oza A.M., Selle F., Davidenko I., Korach J., Mendiola C., Pautier P., Chmielowska E., Bamias A., DeCensi A., Zvirbule Z., González-Martín A., Hegg R., Joly F., Zamagni C., Gadducci A., Martin N., Robb S., Colombo N. Efficacy and Safety of Bevacizumab-Containing Therapy in Newly Diagnosed Ovarian Cancer: ROSiA Single-Arm Phase 3B Study. Int J Gynecol Cancer. 2017; 27(1): 50-8. https://doi.org/10.1097/IGC.0000000000000836.
  • van Beijnum J.R., Nowak-Sliwinska P., Huijbers E.J., Thijssen V.L., Griffioen A.W. The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev. 2015; 67(2): 441-61. https://doi.org/10.1124/pr.114.010215.
  • Dizon D.S., Sill M.W., Schilder J.M., McGonigle K.F., Rahman Z., Miller D.S., Mutch D.G., Leslie K.K. A phase II evaluation of nintedanib (BIBF-1120) in the treatment of recurrent or persistent endometrial cancer: an NRG Oncology/Gynecologic Oncology Group Study. Gynecol Oncol. 2014; 135(3): 441-5. https://doi.org/10.1016/j.ygyno.2014.10.001.
  • Hong X., Qiu S., Wu X., Chen S., Chen X., Zhang B., He A., Xu Y., Wang J., Gao Y., Xu X., Sun L., Zhang Y., Xiang L., Zhou J., Guan Q., Zhu Y., Liu H., Xu H., Zhou Y., Chen B., Shen Y. Efficacy and Safety of Anlotinib in Overall and Disease-Specific Advanced Gynecological Cancer: A Real-World Study. Drug Des Devel Ther. 2023; 17: 2025-33. https://doi.org/10.2147/DDDT.S408304.
  • Coleman R.L., Sill M.W., Lankes H.A., Fader A.N., Finkler N.J., Hoffman J.S., Rose P.G., Sutton G.P., Drescher C.W., McMeekin D.S., Hu W., Deavers M., Godwin A.K., Alpaugh R.K., Sood A.K. A phase II evaluation of aflibercept in the treatment of recurrent or persistent endometrial cancer: a Gynecologic Oncology Group study. Gynecol Oncol. 2012; 127(3): 538-43. https://doi.org/10.1016/j.ygyno.2012.08.020.
  • Zou Y., Xu Y., Chen X., Zheng L. Advances in the application of immune checkpoint inhibitors in gynecological tumors. Int Immunopharmacol. 2023; 117. https://doi.org/10.1016/j.intimp.2023.109774.
  • Harmsen M.J., Arduç A., Bleeker M.C.G., Juffermans L.J.M., Griffioen A.W., Jordanova E.S., Huirne J.A.F. Increased Angiogenesis and Lymphangiogenesis in Adenomyosis Visualized by Multiplex Immunohistochemistry. Int J Mol Sci. 2022; 23(15). https://doi.org/10.3390/ijms23158434.
  • Maiborodin I.V., Krasil'nikov S.E., Kozyakov A.E., Babayants E.V., Kulidzhanyan A.P. Tselesoobraznost' izucheniya opukholevogo angiogeneza kak prognosticheskogo faktora razvitiya raka. Novosti khirurgii. 2015; 23(3): 339-47. https://doi.org/10.18484/2305-0047.2015.3.339.
  • Maiborodin I.V., Kozyakov A.E., Babayants E.V., Krasil'nikov S.E. Angiogenez v limfaticheskikh uzlakh pri razvitii raka v regione limfosbora. Novosti khirurgii. 2016; 24(6): 579-85. https://doi.org/10.18484/2305-0047.2016.6.579.
  • Maghraby H.K., Elsarha A.I., Saad R.S. Peritumoral lymphatic vessel density as a prognostic parameter in endometrial carcinoma: an immunohistochemical study. Indian J Pathol Microbiol. 2010; 53(3): 465-9. https://doi.org/10.4103/0377-4929.68278.
  • Jumaah A.S., Al-Haddad H.S., McAllister K.A., Yasseen A.A. The clinicopathology and survival characteristics of patients with POLE proofreading mutations in endometrial carcinoma: A systematic review and metaanalysis. PLoS One. 2022; 17(2). https://doi.org/10.1371/journal.pone.0263585.
  • Li L.L., Li H., Li J., Zhang X.B., Wang Z.Q., Shen D.H., Wang J.L. [Risk factor analysis of lymph node metastasis in endometrial carcinoma combined with molecular types]. Zhonghua Fu Chan Ke Za Zhi. 2023; 58(10): 733-41. Chinese. https://doi.org/10.3760/cma.j.cn112141-20230317-00125.
  • Ju W., Park H.M., Lee S.N., Sung S.H., Kim S.C. Loss of hMLH1 expression is associated with less aggressive clinicopathological features in sporadic endometrioid endometrial adenocarcinoma. J Obstet Gynaecol Res. 2006; 32(5): 454-60. https://doi.org/10.1111/j.1447-0756.2006.00438.x.
  • Peiró G., Diebold J., Lohse P., Ruebsamen H., Lohse P., Baretton G.B., Löhrs U. Microsatellite instability, loss of heterozygosity, and loss of hMLH1 and hMSH2 protein expression in endometrial carcinoma. Hum Pathol. 2002; 33(3): 347-54. https://doi.org/10.1053/hupa.2002.32220.
  • Honoré L.H., Hanson J., Andrew S.E. Microsatellite instability in endometrioid endometrial carcinoma: correlation with clinically relevant pathologic variables. Int J Gynecol Cancer. 2006; 16(3): 1386-92. https://doi.org/10.1111/j.1525-1438.2006.00535.x.
  • Stewart C.J., Amanuel B., Grieu F., Carrello A., Iacopetta B. KRAS mutation and microsatellite instability in endometrial adenocarcinomas showing MELF-type myometrial invasion. J Clin Pathol. 2010; 63(7): 604-8. https://doi.org/10.1136/jcp.2009.069500.
  • Crumley S., Kurnit K., Hudgens C., Fellman B., Tetzlaff M.T., Broaddus R. Identification of a subset of microsatellite-stable endometrial carcinoma with high PD-L1 and CD8+ lymphocytes. Mod Pathol. 2019; 32(3): 396-404. https://doi.org/10.1038/s41379-018-0148-x.
  • Morin P.J. beta-catenin signaling and cancer. Bioessays. 1999; 21(12): 1021-30. https://doi.org/10.1002/(SICI)1521-1878(199912)22:1<1021::AID-BIES6-3.0.CO;2-P.
  • Bolivar A.M., Luthra R., Mehrotra M., Chen W., Barkoh B.A., Hu P., Zhang W., Broaddus R.R. Targeted next-generation sequencing of endometrial cancer and matched circulating tumor DNA: identification of plasma-based, tumor-associated mutations in early stage patients. Mod Pathol. 2019; 32(3): 405-14. https://doi.org/10.1038/s41379-018-0158-8.
  • Watanabe T., Nanamiya H., Kojima M., Nomura S., Furukawa S., Soeda S., Tanaka D., Isogai T., Imai J.I., Watanabe S., Fujimori K. Clinical relevance of oncogenic driver mutations identified in endometrial carcinoma. Transl Oncol. 2021; 14(3). https://doi.org/10.1016/j.tranon.2021.101010.
  • van den Heerik A.S.V.M., Aiyer K.T.S., Stelloo E., Jürgenliemk-Schulz I.M., Lutgens L.C.H.W., Jobsen J.J., Mens J.W.M., van der SteenBanasik E.M., Creutzberg C.L., Smit V.T.H.B.M., Horeweg N., Bosse T. Microcystic elongated and fragmented (MELF) pattern of invasion: Molecular features and prognostic significance in the PORTEC-1 and -2 trials. Gynecol Oncol. 2022; 166(3): 530-7. https://doi.org/10.1016/j.ygyno.2022.06.027.
  • Kurnit K.C., Fellman B.M., Mills G.B., Bowser J.L., Xie S., Broaddus R.R. Adjuvant treatment in early-stage endometrial cancer: context-dependent impact of somatic CTNNB1 mutation on recurrence-free survival. Int J Gynecol Cancer. 2022; 32(7): 869-74. https://doi.org/10.1136/ ijgc-2021-003340.
  • Kurnit K.C., Kim G.N., Fellman B.M., Urbauer D.L., Mills G.B., Zhang W., Broaddus R.R. CTNNB1 (beta-catenin) mutation identifies low grade, early stage endometrial cancer patients at increased risk of recurrence. Mod Pathol. 2017; 30(7): 1032-41. https://doi.org/10.1038/modpathol.2017.15.
  • Lane D.P., Benchimol S. p53: oncogene or anti-oncogene? Genes Dev. 1990; 4(1): 1-8. https://doi.org/10.1101/gad.4.1.1.
  • Hollstein M., Sidransky D., Vogelstein B., Harris C.C. p53 mutations in human cancers. Science. 1991; 253(5015): 49-53. https://doi.org/10.1126/science.1905840.
  • Kumari P., Sharma I., Saha S.C., Srinivasan R., Sharma A. Promoter methylation status of key genes and its implications in the pathogenesis of endometriosis, endometrioid carcinoma of ovary and endometrioid endometrial cancer. J Cancer Res Ther. 2022; 18(Supplement): 328-34. https://doi.org/10.4103/jcrt.JCRT_1704_20.
  • Brett M.A., Atenafu E.G., Singh N., Ghatage P., Clarke B.A., Nelson G.S., Bernardini M.Q., Köbel M. Equivalent Survival of p53 Mutated Endometrial Endometrioid Carcinoma Grade 3 and Endometrial Serous Carcinoma. Int J Gynecol Pathol. 2021; 40(2): 116-23. https://doi.org/10.1097/PGP.0000000000000674.
  • Miyasaka A., Oda K., Ikeda Y., Sone K., Fukuda T., Inaba K., Makii C., Enomoto A., Hosoya N., Tanikawa M., Uehara Y., Arimoto T., Kuramoto H., Wada-Hiraike O., Miyagawa K., Yano T., Kawana K., Osuga Y., Fujii T. PI3K/mTOR pathway inhibition overcomes radioresistance via suppression of the HIF1-α/VEGF pathway in endometrial cancer. Gynecol Oncol. 2015; 138(1): 174-80. https://doi.org/10.1016/j.ygyno.2015.04.015.
Еще
Статья обзорная