Антиканцерогенная активность флавоноидов растительного происхождения

Автор: Айдын Гызы Ханым, Зульфугарова Мехрибан Балабей

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Медицинские науки

Статья в выпуске: 6 т.8, 2022 года.

Бесплатный доступ

Ввиду безвредности и отсутствия побочных эффектов лекарственных средств растительного происхождения в последние годы в мировой медицине развернуты широкие исследования в данной области. В настоящем обзоре мы сочли целесообразным кратко рассмотреть результаты экспериментальных и фармакотерапевтических исследований в области поиска и изучения антиканцерогенных свойств природных флавоноидов. Просмотр данных, имеющихся в литературе, показал, что антиканцерогенной активностью обладают как экстракты различных растений, так и индивидуальны флавоноиды. Дальнейшее изучение антиканцерогенного действия флавоноидов растительного происхождения заслуживает пристальнейшего внимания, так как теснейшим образом смыкается с проблемой поиска новых методов профилактики и лечения различных видов рака.

Еще

Флавоноиды, противораковая активность, экстракт

Короткий адрес: https://sciup.org/14124422

IDR: 14124422   |   DOI: 10.33619/2414-2948/79/05

Список литературы Антиканцерогенная активность флавоноидов растительного происхождения

  • Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer, 127(12), 2893-2917. https://doi.org/10.1002/ijc.25516
  • De Martel, C., Georges, D., Bray, F., Ferlay, J., & Clifford, G. M. (2020). Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. The Lancet Global Health, 8(2), e180-e190. https://doi.org/10.1016/S2214-109X(19)30488-7
  • Hassanpour, S. H., & Dehghani, M. (2017). Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, 4(4), 127-129. https://doi.org/10.1016/j.jcrpr.2017.07.001
  • Harvey, A. L., Edrada-Ebel, R., & Quinn, R. J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nature reviews drug discovery, 14(2), 111-129. https://doi.org/10.1038/nrd4510
  • Bhat, A. H., Dar, K. B., Anees, S., Zargar, M. A., Masood, A., Sofi, M. A., & Ganie, S. A. (2015). Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine & Pharmacotherapy, 74, 101-110. https://doi.org/10.1016/j.biopha.2015.07.025
  • Rajendran, P., Nandakumar, N., Rengarajan, T., Palaniswami, R., Gnanadhas, E. N., Lakshminarasaiah, U., ... & Nishigaki, I. (2014). Antioxidants and human diseases. Clinica chimica acta, 436, 332-347. https://doi.org/10.1016/j.cca.2014.06.004
  • Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., ... & Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Frontiers in physiology, 11, 694. https://doi.org/10.3389/fphys.2020.00694
  • Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5(3), 93. https://doi.org/10.3390/medicines5030093
  • Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 24(22), 4132. https://doi.org/10.3390/molecules24224132
  • Kumar, M., Pratap, V., Nigam, A. K., Sinha, B. K., Kumar, M., & Singh, J. K. G. (2021). Plants as a source of potential antioxidants and their effective nanoformulations. J. Sci. Res, 65. https://doi.org/10.37398/JSR.2021.650308
  • Chahar, M. K., Sharma, N., Dobhal, M. P., & Joshi, Y. C. (2011). Flavonoids: A versatile source of anticancer drugs. Pharmacognosy reviews, 5(9), 1. https://doi.org/10.4103%2F0973-7847.79093
  • Katyal, P., Bhardwaj, N., & Khajuria, R. (2014). Flavonoids and their therapeutic potential as anticancer agents; biosynthesis, metabolism and regulation. World J Pharm Pharm Sci, 3(6), 2188-216.
  • Harris, Z., Donovan, M. G., Branco, G. M., Limesand, K. H., & Burd, R. (2016). Quercetin as an emerging anti-melanoma agent: a four-focus area therapeutic development strategy. Frontiers in nutrition, 3, 48. https://doi.org/10.3389/fnut.2016.00048
  • Si, H. Y., Li, D. P., Wang, T. M., Zhang, H. L., Ren, F. Y., Xu, Z. G., & Zhao, Y. Y. (2010). Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system. Journal of nanoscience and nanotechnology, 10(4), 2325-2331. https://doi.org/10.1166/jnn.2010.1913
  • Nema, R., Jain, P., Khare, S., & Pradhan, A. (2015). Flavonoid and cancer prevention– Mini review. Research in Pharmacy, 2(2).
  • Hodek, P., Trefil, P., & Stiborová, M. (2002). Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chemico-biological interactions, 139(1), 1-21. https://doi.org/10.1016/S0009-2797(01)00285-X
  • Nabavi, S. M., Šamec, D., Tomczyk, M., Milella, L., Russo, D., Habtemariam, S., ... & Shirooie, S. (2020). Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology advances, 38, 107316. https://doi.org/10.1016/j.biotechadv.2018.11.005
  • Scarano, A., Chieppa, M., & Santino, A. (2018). Looking at flavonoid biodiversity in horticultural crops: A colored mine with nutritional benefits. Plants, 7(4), 98. https://doi.org/10.3390/plants7040098
  • Havsteen, B. H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacology & therapeutics, 96(2-3), 67-202. https://doi.org/10.1016/S0163-7258(02)00298-X
  • Middleton, E., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological reviews, 52(4), 673-751.
  • Huang, Y. T., Hwang, J. J., Lee, P. P., Ke, F. C., Huang, J. H., Huang, C. J., ... & Lee, M. T. (1999). Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis‐associated properties in A431 cells overexpressing epidermal growth factor receptor. British journal of pharmacology, 128(5), 999-1010. https://doi.org/10.1038/sj.bjp.0702879
  • Suolinna, E. M., Buchsbaum, R. N., & Racker, E. (1975). The effect of flavonoids on aerobic glycolysis and growth of tumor cells. Cancer Research, 35(7), 1865-1872.
  • Scambia, G., Ranelletti, F. O., Panici, P. B., Piantelli, M., Bonanno, G., De Vincenzo, R., ... & Mancuso, S. (1990). Inhibitory effect of quercetin on OVCA 433 cells and presence of type II oestrogen binding sites in primary ovarian tumours and cultured cells. British journal of cancer, 62(6), 942-946. https://doi.org/10.1038/bjc.1990.414
  • Kandaswami, C., Perkins, E., Soloniuk, D. S., Drzewiecki, G., & Middleton Jr, E. (1991). Antitproliferative effects of citrus flavonoids on a human squamous cell carcinoma in vitro. Cancer letters, 56(2), 147-152. https://doi.org/10.1016/0304-3835(91)90089-Z
  • Constantinou, A., Kiguchi, K., & Huberman, E. (1990). Induction of differentiation and DNA strand breakage in human HL-60 and K-562 leukemia cells by genistein. Cancer Research, 50(9), 2618-2624.
  • Edwards, J. M., Raffauf, R. F., & Le Quesne, P. W. (1979). Antineoplastic activity and cytotoxicity of flavones, isoflavones, and flavanones. Journal of natural products, 42(1), 85-91. https://doi.org/10.1021/np50001a002
  • Molnar, J., Beladi, I., Domonkos, K., Földeák, S., Boda, K., & Veckenstedt, A. (1981). Antitumor activity of flavonoids on NK/Ly ascites tumor cells. Neoplasma, 28(1), 11-18. PMID: 7279054
  • Huang, Y. T., Hwang, J. J., Lee, P. P., Ke, F. C., Huang, J. H., Huang, C. J., ... & Lee, M. T. (1999). Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis‐associated properties in A431 cells overexpressing epidermal growth factor receptor. British journal of pharmacology, 128(5), 999-1010. https://doi.org/10.1038/sj.bjp.0702879
  • Lee, L. T., Huang, Y. T., Hwang, J. J., Lee, P. P., Ke, F. C., Nair, M. P., ... & Lee, M. T. (2002). Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and luteolin leads to growth inhibition and apoptosis of pancreatic tumor cells. Anticancer research, 22(3), 1615-1627.
  • Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S. I., Itoh, N., ... & Fukami, Y. (1987). Genistein, a specific inhibitor of tyrosine-specific protein kinases. Journal of Biological chemistry, 262(12), 5592-5595. https://doi.org/10.1016/S0021-9258(18)45614-1
  • Le Marchand, L. (2002). Cancer preventive effects of flavonoids—a review. Biomedicine & pharmacotherapy, 56(6), 296-301. https://doi.org/10.1016/S0753-3322(02)00186-5
  • Messina, M. J., Persky, V., Setchell, K. D., & Barnes, S. (1994). Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutrition and cancer, 21(2), 113-131. https://doi.org/10.1080/01635589409514310
  • Wei, Y. Q., Zhao, X., Kariya, Y., Fukata, H., Teshigawara, K., & Uchida, A. (1994). Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Research, 54(18), 4952-4957.
  • Hirano, T., Abe, K., Gotoh, M., & Oka, K. (1995). Citrus flavone tangeretin inhibits leukaemic HL-60 cell growth partially through induction of apoptosis with less cytotoxicity on normal lymphocytes. British journal of cancer, 72(6), 1380-1388. https://doi.org/10.1038/bjc.1995.518
  • Knekt, P., Kumpulainen, J., Järvinen, R., Rissanen, H., Heliövaara, M., Reunanen, A., ... & Aromaa, A. (2002). Flavonoid intake and risk of chronic diseases. The American journal of clinical nutrition, 76(3), 560-568. https://doi.org/10.1093/ajcn/76.3.560
  • Le Marchand, L., Murphy, S. P., Hankin, J. H., Wilkens, L. R., & Kolonel, L. N. (2000). Intake of flavonoids and lung cancer. Journal of the National Cancer Institute, 92(2), 154-160. https://doi.org/10.1093/jnci/92.2.154
  • Akram, M., Iqbal, M., Daniyal, M., & Khan, A. U. (2017). Awareness and current knowledge of breast cancer. Biological research, 50(1), 1-23. https://doi.org/10.1007/s12013-014-0459-6
  • Tao, Z., Shi, A., Lu, C., Song, T., Zhang, Z., & Zhao, J. (2015). Breast cancer: epidemiology and etiology. Cell biochemistry and biophysics, 72(2), 333-338. https://doi.org/10.1007/s12013-014-0459-6
  • Jain, A., Madu, C. O., & Lu, Y. (2021). Phytochemicals in chemoprevention: A costeffective complementary approach. Journal of Cancer, 12(12), 3686. https://doi.org/10.7150%2Fjca.57776
  • Choudhari, A. S., Mandave, P. C., Deshpande, M., Ranjekar, P., & Prakash, O. (2020). Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Frontiers in pharmacology, 1614. https://doi.org/10.3389/fphar.2019.01614
  • Singh, D. B., Gupta, M. K., & Pathak, R. K. (2020). Natural Products in Cancer Chemoprevention and Chemotherapy. Front. Nat. Prod. Chem, 6(6), 151-182.
  • Chen, Y. C., Shen, S. C., Lee, W. R., Lin, H. Y., Ko, C. H., Shih, C. M., & Yang, L. L. (2002). Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p21 protein in hepatocellular carcinoma cells SK-HEP-1. Archives of toxicology, 76(5), 351-359. https://doi.org/10.1007/s00204-002-0346-6
  • Wei, L., Lu, N., Dai, Q., Rong, J., Chen, Y., Li, Z., ... & Guo, Q. (2010). Different apoptotic effects of wogonin via induction of H2O2 generation and Ca2+ overload in malignant hepatoma and normal hepatic cells. Journal of cellular biochemistry, 111(6), 1629-1641. https://doi.org/10.1002/jcb.22898
  • Middleton, E., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological reviews, 52(4), 673-751.
  • Van Dross, R., Xue, Y., Knudson, A., & Pelling, J. C. (2003). The chemopreventive bioflavonoid apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines. The Journal of nutrition, 133(11), 3800S-3804S. https://doi.org/10.1093/jn/133.11.3800S
  • Myhrstad, M. C., Carlsen, H., Nordström, O., Blomhoff, R., & Moskaug, J. Ø. (2002). Flavonoids increase the intracellular glutathione level by transactivation of the γ-glutamylcysteine synthetase catalytical subunit promoter. Free Radical Biology and Medicine, 32(5), 386-393. https://doi.org/10.1016/S0891-5849(01)00812-7
  • Rodriguez, J., Yanez, J., Vicente, V., Alcaraz, M., Benavente-Garcia, O., Castillo, J., ... & Lozano, J. A. (2002). Effects of several flavonoids on the growth of B16F10 and SK-MEL-1 melanoma cell lines: relationship between structure and activity. Melanoma research, 12(2), 99-107.
  • Manthey, J. A., & Guthrie, N. (2002). Antiproliferative activities of citrus flavonoids against six human cancer cell lines. Journal of Agricultural and Food Chemistry, 50(21), 5837-5843. https://doi.org/10.1021/jf020121d
  • Chiang, L. C., Ng, L. T., Lin, I. C., Kuo, P. L., & Lin, C. C. (2006). Anti-proliferative effect of apigenin and its apoptotic induction in human Hep G2 cells. Cancer letters, 237(2), 207-214. https://doi.org/10.1016/j.canlet.2005.06.002
  • Hirano, T., Abe, K., Gotoh, M., & Oka, K. (1995). Citrus flavone tangeretin inhibits leukaemic HL-60 cell growth partially through induction of apoptosis with less cytotoxicity on normal lymphocytes. British journal of cancer, 72(6), 1380-1388. https://doi.org/10.1038/bjc.1995.518
  • Manthey, J. A., & Guthrie, N. (2002). Antiproliferative activities of citrus flavonoids against six human cancer cell lines. Journal of Agricultural and Food Chemistry, 50(21), 5837- 5843. https://doi.org/10.1021/jf020121d
  • Ahmed, O. M., Ahmed, A. A., Fahim, H. I., & Zaky, M. Y. (2019). Quercetin and naringenin abate diethylnitrosamine/acetylaminofluorene-induced hepatocarcinogenesis in Wistar rats: the roles of oxidative stress, inflammation and cell apoptosis. Drug and Chemical Toxicology, 1-12. https://doi.org/10.1080/01480545.2019.1683187
  • Zhao, Z., Jin, G., Ge, Y., & Guo, Z. (2019). Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacology, 27(5), 1021- 1036. https://doi.org/10.1007/s10787-018-00556-3
  • Chen, Y. Y., Chang, Y. M., Wang, K. Y., Chen, P. N., Hseu, Y. C., Chen, K. M., ... & Hsu, L. S. (2019). Naringenin inhibited migration and invasion of glioblastoma cells through multiple mechanisms. Environmental toxicology, 34(3), 233-239. https://doi.org/10.1002/tox.22677
  • Shirakami, Y., Sakai, H., Kochi, T., Seishima, M., & Shimizu, M. (2016). Catechins and its role in chronic diseases. Drug Discovery from Mother Nature, 67-90. https://doi.org/10.1007/978-3-319-41342-6_4
  • Granado-Serrano, A. B., Martín, M. A., Haegeman, G., Goya, L., Bravo, L., & Ramos, S. (2010). Epicatechin induces NF-κB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells. British Journal of Nutrition, 103(2), 168-179. https://doi.org/10.1017/S0007114509991747
  • Wang, P., Heber, D., & Henning, S. M. (2012). Quercetin increased the antiproliferative activity of green tea polyphenol (-)-epigallocatechin gallate in prostate cancer cells. Nutrition and cancer, 64(4), 580-587. https://doi.org/10.1080/01635581.2012.661514
  • Niu, G., Yin, S., Xie, S., Li, Y., Nie, D., Ma, L., ... & Wu, Y. (2011). Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells. Acta Biochim Biophys Sin, 43(1), 30-37.
  • Granado-Serrano, A. B., Martín, M. A., Bravo, L., Goya, L., & Ramos, S. (2006). Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). The Journal of nutrition, 136(11), 2715-2721. https://doi.org/10.1093/abbs/gmq107
  • Sun, S., Gong, F., Liu, P., & Miao, Q. (2018). Metformin combined with quercetin synergistically repressed prostate cancer cells via inhibition of VEGF/PI3K/Akt signaling pathway. Gene, 664, 50-57. https://doi.org/10.1016/j.gene.2018.04.045
Еще
Статья научная