Антиоксидантный статус и качество мяса у сельскохозяйственной птицы и животных при стрессе и его коррекция с помощью адаптогенов различной природы (обзор)

Автор: Боголюбова Н.В., Некрасов Р.В., Зеленченкова А.А.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 4 т.57, 2022 года.

Бесплатный доступ

Животные и птица современных генотипов имеют высокий генетический потенциал продуктивности, но зачастую он не может быть реализован в полной мере из-за воздействия на организм стрессов различной природы (В.И. Фисинин с соавт., 2015). Здоровье животных - неотъемлемая часть их благополучия, оно служит предпосылкой как высокой продуктивности, так и безопасности получаемой продукции для человека (K. Proudfoot с соавт., 2015). Окислительный стресс, возникающий как результат дисбаланса образования и детоксикации свободных радикалов в организме птицы и моногастричных животных вследствие кормовых, климатических, технологических и биологических стрессов, негативно отражается на состоянии здоровья, показателях роста и качестве продукции. При этом куриное мясо наиболее подвержено процессам перекисного окисления липидов по сравнению с говядиной и свининой вследствие высокого содержания в нем полиненасыщенных жирных кислот и негемового железа (Fe3+ и Fe2+) (И.Ф. Горлов с соавт., 2016). В представленном обзоре обобщена информация о влиянии факторов стресса, включая связанные с содержанием (климатический, плотность посадки), транспортировкой, кормлением, ветеринарными мероприятиями, на общий антиоксидантный статус организма, окислительные свойства мяса и его качество на примере кур и бройлеров. Климатические и другие условия содержания определяют поведенческие, физиологические и иммунные реакции в организме птицы, влияют на антиоксидантный и биохимический статус, продуктивность. При этом ухудшается качество мяса, что проявляется в изменении рН и структуры мышечных волокон, повышении степени окисления липидов в тканях, появлении дефектов мяса (K. Rosenvold с соавт., 2003; M. Petracci с соавт., 2015; P.F. Surai с соавт., 2019). Эффект стрессов содержания зависит от характера воздействия, генотипа животных, типа мышечных волокон (N.A. Mir с соавт., 2017; P.A. Gonzalez-Rivas с соавт., 2020; M. Zhang с соавт., 2020). Транспортный стресс - результат одновременного действия нескольких факторов (L. Zhang с соавт., 2014). Влияние этого стресса и изменение его биохимических маркеров зависят от условий транспортировки, кормления и содержания, индивидуальных особенностей и состояния здоровья птицы. Данные о воздействии стрессов на обмен веществ у животных и птицы достаточно противоречивы. В последнее время во всех отраслях животноводства обсуждается применение синтетических или природных антиоксидантов в связи с их способностью влиять на окислительный стресс и качество мяса (A. Gouda с соавт., 2020). В обзоре приводится анализ способов улучшения антиоксидантной защиты и качества мяса посредством воздействия кормовых факторов, природных адаптогенов (витаминов Е и С, таксифолина и кверцетина) (M. Mazur-Kuśnirek с соавт., 2019; V.R. Pirgozliev с соавт., 2020). Чтобы получить мясо высокого качества, необходимо изучение биомаркеров антиоксидантной защиты. Использование антиоксидантов усиливает ее, повышает резистентность, улучшает качества продукции. Такой способ профилактики отрицательных последствий стрессов в животноводстве и птицеводстве обсуждается как наиболее приемлемый и дешевый, в особенности при комбинации природных адаптогенов, сочетание которых в рационе может оказаться эффективнее, чем действие каждого по отдельности.

Еще

Стрессы, качество мяса, антиоксидантный статус, витамин е, витамин с, таксифолин, кверцетин

Короткий адрес: https://sciup.org/142236372

IDR: 142236372   |   DOI: 10.15389/agrobiology.2022.4.628rus

Список литературы Антиоксидантный статус и качество мяса у сельскохозяйственной птицы и животных при стрессе и его коррекция с помощью адаптогенов различной природы (обзор)

  • Фисинин В.И., Кавтрашвили А.Ш. Тепловой стресс у птицы. Сообщение I. Опасность, физиологические изменения в организме, признаки и проявления (обзор). Сельскохозяйственная биология, 2015, 2(50): 162-171 (doi: 10.15389/agrobiology.2015.2.162rus).
  • Rovers A., Brümmer N., Christoph-Schulz I. Citizens' perception of different aspects regarding German livestock production. In: Proc. 12th International forum on system dynamics and innovation in food networks. Innsbruck-Igls, Austria, 2018: 208-215.
  • Proudfoot K., Habing G. Social stress as a cause of diseases in farm animals: Current knowledge and future directions. The Veterinary Journal, 2015, 206(1): 15-21 (doi: 10.1016/j.tvjl.2015.05.024).
  • Ouali A., Herrera-Mendez C.H., Coulis G., Becila S., Boudjellal A., Aubry L., Sentandreu M.A. Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Science, 2006, 74(1): 44-58 (doi: 10.1016/j.meatsci.2006.05.010).
  • Xing T., Zhao X., Wang P., Chen H., Xu X., Zhou G. Different oxidative status and expression of calcium channel components in stress-induced dysfunctional chicken muscle. Journal of Animal Science, 2017, 95(4): 1565-1573 (doi: 10.2527/jas.2016.0868).
  • Surai P.F., Kochish I.I., Fisinin V.I., Kidd M.T. Antioxidant defence systems and oxidative stress in poultry biology: an update. Antioxidants, 2019, 8(7): E235 (doi: 10.3390/antiox8070235).
  • Sies H., Berndt C., Jones D.P. Oxidative stress. Annual Review of Biochemistry, 2017, 86: 1-34 (doi: 10.1146/annurev-biochem-061516-045037).
  • Estevez M. Oxidative damage to poultry: from farm to fork. Poultry Science, 2015, 94(6): 13681378 (doi: 10.3382/ps/pev094).
  • Mishra B., Jha R. Oxidative stress in the poultry gut: potential challenges and interventions. Frontiers in Veterinary Science, 2019, 6: 60 (doi: 10.3389/fvets.2019.00060).
  • Surai P.F., Fisinin V.I. Vitagenes in poultry production. Part 1. Technological and environmental stresses. World's Poultry Science Journal, 2016, 72(4): 721-733 (doi: 10.1017/S0043933916000714).
  • Bogolyubova N.V., Chabaev M.G., Fomichev Yu.P., Tsis E.Yu., Semenova A.A., Nekrasov R.V. Ways to reduce adverse effects of stress in pigs using nutritional factors. Ukrainian Journal of Ecology, 2019, 9(2): 239-245 (doi: 10.15421/2019_70).
  • Petracci M., Mudalal S., Soglia F., Cavani C. Meat quality in fast-growing broiler chickens. World's Poultry Science Journal, 2015, 71(2): 363-374 (doi: 10.1017/S0043933915000367).
  • Zhang M. Dunshea F.R., Warner R.D., DiGiacomo K., Osei-Amponsah R., Chauhan S.S. Impacts of heat stress on meat quality and strategies for amelioration: a review. International Journal of Biometeorology, 2020, 64(9): 1613-1628 (doi: 10.1007/s00484-020-01929-6).
  • Estevez M., Petracci M. Benefits of magnesium supplementation to broiler subjected to dietary and heat stress: improved redox status, breast quality and decreased myopathy incidence. Antioxidants, 2019, 8(10): 456 (doi: 10.3390/antiox8100456).
  • Pietrzak E., Dunislawska A., Siwek M., Zampiga M., Sirri F., Meluzzi A., Tavaniello S., Ma-iorano G., Slawinska A. Splenic gene expression signatures in slow-growing chickens stimulated in ovo with galactooligosaccharides and challenged with heat. Animals, 2020, 10(3): 474 (doi: 10.3390/ani10030474).
  • Hofmann T., Schmucker S.S., Bessei W., Grashorn M., Stefanski V. Impact of housing environment on the immune system in chickens: a review. Animals, 2020, 10(7): 1138 (doi: 10.3390/ani10071138).
  • He X., Lu Z., Ma B., Zhang L., Li, J., Jiang, Y., Zhou G., Gao F. Effects of chronic heat exposure on growth performance, intestinal epithelial histology, appetite-related hormones and genes expression in broilers. Journal of the Science of Food and Agriculture, 2018, 98(12): 44714478 (doi: 10.1002/jsfa.8971).
  • Shakeri M., Cottrell J.J., Wilkinson S., Le H.H., Suleria H.A., Warner R.D., Dunshea F.R. Growth performance and characterization of meat quality of broiler chickens supplemented with betaine and antioxidants under cyclic heat stress. Antioxidants, 2019, 8(9): 336 (doi: 10.3390/antiox8090336).
  • Sahin K., Sahin N., Kucuk O., Hayirli A., Prasad A.S. Role of dietary zinc inheat-stressed poultry: a review. Poultry Science, 2009, 88(10): 2176-2183 (doi: 10.3382/ps.2008-00560).
  • Abidin Z., Khatoon A. Heat stress in poultry and the beneficial effects of ascorbic acid (vitamin C) supplementation during periods of heat stress. World's Poultry Science Journal, 2013, 69(1): 135-152 (doi: 10.1017/S0043933913000123).
  • Borges S.A., Fischer DaSilva A.V., Majorka A., Hooge D.M., Cummings K.R. Physiological responses of broiler chicken to heat stress and electrolyte balance (sodium plus potassium minus chloride, milliequivalent per kilogram). Poultry Science, 2004, 83(9): 1551-1558 (doi: 10.1093/ps/83.9.1551).
  • Attia Y.A., Hassan R.A., Qota E.M. Recovery from adverse effects of heat stress on slow growing chicks in the tropics 1: Effect of ascorbic acid and different levels of betaine. Tropical Animal Health and Production, 2009, 41: 807-818 (doi: 10.1007/s11250-008-9256-9).
  • Yahav S., McMurty J. Thermo tolerance acquisition in broiler chickens by temperature conditioning early in life — the effect of timing and ambient temperature. Poultry Science, 2001, 80(12): 1662-1666 (doi: 10.1093/ps/80.12.1662).
  • Garriga C., Hunter R.R., Amat C., Planas J.M., Mitchell M.A., Moreto M. Heat stress increases apical glucose transport in the chicken jejunum. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2006, 290(1): 195-201 (doi: 10.1152/ajpregu.00393.2005).
  • Al-Homidan A.H. Effect of environmental factors on ammonia and dust production and broiler performance. British Poultry Science, 1998, 39: 9-10 (doi: 10.1080/00071669888052).
  • Donker R.A., Neeuwland M.G., van der Zijpp A.J. Heat-stress influences on antibodyproduction in chicken lines selected for high and low immune responsivness. Poultry Science, 1990, 69(4): 599-607 (doi: 10.3382/ps.0690599).
  • Pirgozliev V.R., Westbrook C.A., Woods S.L., Mansbridge S.C., Rose S.P., Whiting I.M., Yovchev D.G., Atanasov A.G., Kljak K., Staykova G.P., Ivanova S.G., Karagejili M.R., Karadas F., Stringhini J.H. Feeding dihydroquercetin and vitamin E to broiler chickens reared at standard and high ambient temperatures. Archives of Animal Nutrition, 2020, 74(6): 496-511 (doi: 10.1080/1745039X.2020.1820807).
  • Attia Y.A., Al-Harthi M.A., Elnaggar A.Sh. Productive, physiological and immunological responses of two broiler strains fed different dietary regimens and exposed to heat stress. Italian Journal of Animal Science, 2018, 17(3): 686-697 (doi: 10.1080/1828051X.2017.1416961).
  • Xing T., Gao F., Tume R.K., Zhou G. H., Xu X.L. Stress effects on meat quality: a mechanistic perspective. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(2): 380-401 (doi: 10.1111/1541-4337.12417).
  • Altan Ö., Pabuijcuoglu A., Altan A., Konyalioglu S., Bayraktar H. Effect of heat stresson oxidative stress, lipid peroxidation and some stress parameters in broilers. British Poultry Science, 2003, 44(4): 545-550 (doi: 10.1080/00071660310001618334).
  • Sen C.K. Oxidants and antioxidants in exercise. Journal of Applied Physiology, 1995, 79(3): 675686 (doi: 10.1152/jappl.1995.79.3.675).
  • Clanton T.L., Hypoxia-induced reactive oxygen species formation in skeletal muscle. Journal of Applied Physiology, 2007, 102(6): 2379-2388 (doi: 10.1152/japplphysiol.01298.2006).
  • Mujahid A., Akiba Y., Toyomizu M. Acute heat stress induces oxidative stress anddecreases adaptation in young white leghorn cockerels by downregulation of avian uncoupling protein. Poultry Science, 2007, 86(2): 364-371 (doi: 10.1093/ps/86.2.364).
  • Leishman E.M., Ellis J., van Staaveren N., Barbut S., Vanderhout R.J., Osborne V.R., Wood B.J., Harlander-Matauschek A., Baes C.F., Meta-analysis to predict the effects of temperature stress on meat quality of poultry. Poultry Science, 2021, 100(11): 101471 (doi: 10.1016/j.psj.2021.101471).
  • Hashizawa Y., Kubota M., Kadowaki M., Fujimura S. Effect of dietary vitamin E on broiler meat qualities, color, water-holding capacity and shear force value, under heat stress conditions. Animal Science Journal, 2013, 84(11): 732-736 (doi: 10.1111/asj.12079).
  • Gonzalez-Rivas P.A., Chauhan S.S., Ha M., Fegan N., Dunshea F.R., Warner R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: a review. Meat Science, 2020, 162: 108025 (doi: 10.1016/j.meatsci.2019.108025).
  • Mir N.A., Rafiq A., Kumar F., Singh V., Shukla V. Determinants of broiler chicken meat quality and factors affecting them: a review. Journal of Food Science and Technology, 2017, 54: 2997-3009 (doi: 10.1007/s13197-017-2789-z).
  • Temim S., Chagneau A.-M., Peresson R., Tesseraud S. Chronic heat exposure alters protein turnover of three different skeletal muscles in finishing broiler chickens fed 20 or 25% protein diets. The Journal of Nutrition, 2000, 130(4): 813-819 (doi: 10.1093/jn/130.4.813).
  • Ezzine S.B.-O., Everaert N., Metayer-Coustard S., Rideau N., Berri C., Joubert R., Temim S., Collin A., Tesseraud S. Effects of heat exposure on Akt/S6K1 signaling and expression of genes related to protein and energy metabolism in chicken (Gallus gallus) pectoralis major muscle. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2010, 157(3): 281-287.
  • Ak§it M., Yalcin S., Özkan S., Metin K., Özdemir D. Effects of temperature during rearing and crating on stress parameters and meat quality of broilers. Poultry Science, 2006, 85(11): 1867-1874 (doi: 10.1093/ps/85.11.1867).
  • Love J.D., Pearson A.M. Lipid oxidation in meat and meat products—a review. Journal of the American Oil Chemists' Society, 1971, 48(10): 547-549 (doi: 10.1007/BF02544559).
  • Huang C., Jiao H., Song Z., Zhao J., Wang X., Lin H. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. Journal of Animal Science, 2015, 93(5): 21442153 (doi: 10.2527/jas.2014-8739).
  • Feng J.-H., Zhang M.-H., Zheng S.-S., Xie P., Li J.-Q. The effect of cyclic high temperature on mitochondrial ROS production, Ca2+-ATPase activity and breast meat quality of broilers. Acta Veterinaria Et Zootechnica Sinica, 2006, 37(12): 1304-1311.
  • Mujahid A., Yoshiki Y., Akiba Y., Toyomizu, M. Superoxide radical production in chicken skeletal muscle induced by acute heat stress. Poultry Science, 2005, 84(2): 307-314 (doi: 10.1093/ps/84.2.307).
  • Baziz H.A., Geraert P.A., Padilha J.C.F., Guillaumin S. Chronic heat exposure enhances fat deposition and modifies muscle and fat partition in broiler carcasses. Poultry Science, 1996, 75(4): 505-513 (doi: 10.3382/ps.0750505).
  • Lu Q., Wen J., Zhang H. Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poultry Science, 2007, 86(6): 1059-1064 (doi: 10.1093/ps/86.6.1059).
  • Zhang L., Yi Y., Guo Q., Sun Y., Ma S., Xiao S., Geng J., Zheng Z., Song S. Hsp90 interacts with AMPK and mediates acetyl-CoA carboxylase phosphorylation. Cellular Signalling, 2012, 24(4): 859-865 (doi: 10.1016/j.cellsig.2011.12.001).
  • Ma B., He X., Lu Z., Zhang L., Li J., Jiang Y., Zhou G., Gao F. Chronic heat stress affects muscle hypertrophy, muscle protein synthesis and uptake of amino acid in broilers via insulin like growth factor-mammalian target of rapamycin signal pathway. Poultry Science, 2018, 97(12): 4150-4158 (doi: 10.3382/ps/pey291).
  • Lu Z., He X., Ma B., Zhang L., Li J., Jiang, Y., Zhou G., Gao F. Dietary taurine supplementation improves breast meat quality in chronic heat-stressed broilers via activating Nrf2 pathway and protecting mitochondria from oxidative attack. Journal of the Science of Food and Agriculture, 2018, 99(3): 1066-1072 (doi: 10.1002/jsfa.9273).
  • Jiang N., Wang P., Xing T., Han M., Xu X. An evaluation of the effect of water-misting sprays with forced ventilation on the occurrence of pale, soft, and exudative meat in transported broilers during summer: impact of the thermal microclimate. Journal of Animal Science, 2016, 94(5): 22182227 (doi: 10.2527/jas.2015-9823).
  • Xing T., Li Y.H., Li M., Jiang N.N., Xu X.L., Zhou G.H. Influence of transport conditions and pre-slaughter water shower spray during summer on protein characteristics and water distribution of broiler breast meat. Animal Science Journal, 2016, 87(11): 1413-1420 (doi: 10.1111/asj.12593).
  • Zhang C., Zhao X., Wang L., Yang L., Chen X., Geng Z. Resveratrol beneficially affects meat quality of heat-stressed broilers which is associated with changes in muscle antioxidant status. Animal Science Journal, 2017, 88(10): 1569-1574 (doi: 10.1111/asj.12812).
  • Li W., Wei F., Xu B., Sun Q., Deng W., Ma H., Bai J., Li S. Effect of stocking density and alpha-lipoic acid on the growth performance, physiological and oxidative stress and immune response of broilers. Asian-Australasian Journal of Animal Sciences, 2019, 32(12): 1914-1922 (doi: 10.5713/ajas.18.0939).
  • Goo D., Kim J.H., Park G.H., Delos Reyes J.B., Kil D.Y. Effect of heat stress and stocking density on growth performance, breast meat quality, and intestinal barrier function in broiler chickens. Animals, 2019, 9(3): 107 (doi: 10.3390/ani9030107).
  • Wang B., Min Z., Yuan J., Zhang B., Guo Y. Effects of dietary tryptophan and stocking density on the performance, meat quality, and metabolic status of broilers. Journal of Animal Science and Biotechnology, 2014, 5(1): 44 (doi: 10.1186/2049-1891-5-44).
  • Yu D.G., Namgung N., Kim J.H., Won S.Y., Choi W.J., Kil D.Y. Effects of stocking density and dietary vitamin C on performance, meat quality, intestinal permeability, and stress indicators in broiler chickens. Journal of Animal Science and Technology, 2021, 63(4): 815-826 (doi: 10.5187/jast.2021.e77).
  • Castellini C., Mugnai C., Dal Bosco A. Effect of organic production system on broiler carcass and meat quality. Meat Science, 2002, 60(3): 219-225 (doi: 10.1016/s0309-1740(01)00124-3).
  • Perai A.H., Kermanshahi H., Moghaddam H.N., Zarban A. Effects of supplemental vitamin C and chromium on metabolic and hormonal responses, antioxidant status, and tonic immobility reactions of transported broiler chickens. Biological Trace Element Research, 2014, 157: 224-233 (doi: 10.1007/s12011-013-9879-1).
  • Zhang L., Li J.L., Gao T., Lin M., Wang X.F., Zhu X.D., Gao F., Zhou G.H. Effects of dietary supplementation with creatine monohydrate during the finishing period on growth performance, carcass traits, meat quality and muscle glycolytic potential of broilers subjected to transport stress. Animal, 2014, 8(12): 1955-1962 (doi: 10.1017/S1751731114001906).
  • Tamzil M.H., Indarsih B., Jaya I.N.S. Rest before slaughtering alleviates transportation stress and improves meat quality in broiler chickens. International Journal of Poultry Science, 2019, 18(12): 585-590 (doi: 10.3923/ijps.2019.585.590).
  • Han H.-S., Kang G., Kim J.S., Choi B.H., Koo S.-H. Regulation of glucose metabolism from a liver-centric perspective. Experimental & Molecular Medicine, 2016, 48(3): e218 (doi: 10.1038/emm.2015.122).
  • Xing T., Xu X., Jiang N., Deng S. Effect of transportation and pre-slaughter water shower spray with resting on AMP-activated protein kinase, glycolysis and meat quality of broilers during summer. Animal Science Journal, 2016, 87(2): 299-307 (doi: 10.1111/asj.12426).
  • Zhang L., Wang X., Li J., Zhu X., Gao F., Zhou G. Creatine monohydrate enhances energy status and reduces glycolysis via inhibition of AMPK pathway in pectoralis major muscle of transport-stressed broilers. Journal of Agricultural and Food Chemistry, 2017, 65(32): 6991-6999 (doi: 10.1021/acs.jafc.7b02740).
  • Feng J., Li J., Wu L., Yu Q., Ji J., Wu J., Dai W., Guo C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 2020, 39: 126 (doi: 10.1186/s13046-020-01629-4).
  • Halliday W., Ross J., Christie G., Jones R. Effect of transportation on blood metabolites in broilers. British Poultry Science, 1977, 18(6): 657-659 (doi: 10.1080/00071667708416417).
  • Zhang C., Wang L., Zhao X.H., Chen X.Y., Yang L., Geng Z.Y. Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status. Poultry Science, 2017, 96(7): 2219-2225 (doi: 10.3382/ps/pex004).
  • Zheng A., Lin S., Pirzado S.A., Chen Z., Chang W., Cai H., Liu G. Stress associated with simulated transport, changes serum biochemistry, postmortem muscle metabolism, and meat quality of broilers. Animals, 2020, 10: 1442 (doi: 10.3390/ani10081442).
  • Nawaz A.H., Amoah K., Leng Q.Y., Zheng J.H., Zhang W.L., Zhang L. Poultry response to heat stress: its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Frontiers in Veterinary Science, 2021, 8: 699081 (doi: 10.3389/fvets.2021.699081).
  • Beauclercq S., Nadal-Desbarats L., Hennequet-Antier C., Collin A., Tesseraud S., Bourin M., Bihan-Duval E.L., Berri C. Serum and muscle metabolomics for the prediction of ultimate pH, a key factor for chicken-meat quality. Journal of Proteome Research, 2016, 15(4): 1168-1178 (doi: 10.1021/acs.jproteome.5b01050).
  • de Souza Langer R.O., Simöes G.S., Soares A.L., Oba A., Rossa A., Shimokomaki M., Ida E.I. Broiler transportation conditions in a Brazilian commercial line and the occurrence of breast PSE (pale, soft, exudative) meat and DFD-like (dark, firm, dry) meat. Brazilian Archives of Biology and Technology, 2010, 53(5): 1161-1167 (doi: 10.1590/S1516-89132010000500021).
  • Wilpe S.V., Koornstra R.H.N., Brok M.D., Groot J.W.D., Blank C., Vries J.M.D., Ger-ritsen W.R., Mehraet N. Lactate dehydrogenase: a marker of diminished antitumor immunity. OncoImmunology, 2020, 9(1): 1731942 (doi: 10.1080/2162402X.2020.1731942).
  • Zhang C., Geng Z.Y., Chen K.K., Zhao X., Wang C. L-theanine attenuates transport stress-induced impairment of meat quality of broilers through improving muscle antioxidant status. Poultry Science, 2019, 98(10): 4648-4655 (doi: 10.3382/ps/pez164).
  • Gou Z., Abouelezz K.F.M., Fan Q., Li L., Lin X., Wang Y., Cui X., Ye J., Masoud M.A., Jiang S., Ma X. Physiological effects of transport duration on stress biomarkers and meat quality of medium-growing yellow broiler chickens. Animal, 2021, 15(2): 100079 (doi: 10.1016/j.ani-mal.2020.100079).
  • Zhang L., Yue H.Y., Wu S.G., Xu L., Zhang H.J., Yan H.J., Cao Y.L., Gong Y.S., Qi G.H. Transport stress in broilers. II. Superoxide production, adenosine phosphate concentrations, and mRNA levels of avian uncoupling protein, avian adenine nucleotide translocator, and avian pe-roxisome proliferator-activated receptor-gamma coactivator-1alpha in skeletal muscles. Poultry Science, 2010, 89(3): 393-400 (doi: 10.3382/ps.2009-00281).
  • Archile-Contreras A.C., Purslow P.P. Oxidative stress may affect meat quality by interfering with collagen turnover by muscle fibroblasts. Food Research International, 2011, 44(2): 582-588 (doi: 10.1016/j.foodres.2010.12.002).
  • Wang X.F., Zhu X.D., Li Y.J., Liu Y., Li J.L., Gao F., Zhou G.H., Zhang L. Effect of dietary creatine monohydrate supplementation on muscle lipid peroxidation and antioxidant capacity of transported broilers in summer. Poultry Science, 2015, 94(11): 2797-2804 (doi: 10.3382/ps/pev255).
  • Mazur-Kusnirek M., Antoszkiewicz Z., Lipinski K., Kaliniewicz J., Kotlarczyk S., Zukowski P. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens exposed to high temperature. Archives of Animal Nutrition, 2019, 73(2): 111-126 (doi: 10.1080/1745039X.2019.1572342).
  • Koch R.E. Hill G. E. An assessment of techniques to manipulate oxidative stress in animals. Functional Ecology, 2016, 31(1): 9-21 (doi: 10.1111/1365-2435.12664).
  • Abdelrahman R. E., Khalaf A.A.A., Elhady M.A., Ibrahim M.A., Hassanen E.I., Noshy P.A. Quercetin ameliorates ochratoxin A-Induced immunotoxicity in broiler chickens by modulation of PI3K/AKT pathway. Chemico-Biological Interactions, 2022, 351: 109720 (doi: 10.1016/j.cbi.2021.109720).
  • Sorrenti V., Giacomo C.D., Acquaviva R., Barbagallo I., Bognanno M., Galvano F. Toxicity of ochratoxin A and its modulation by antioxidants: a review. Toxins, 2013, 5(10): 1742-1766 (doi: 10.3390/toxins5101742).
  • Hameed M.R., Khan M.Z., Saleemi M.K., Khan A., Akhtar M., Hassan Z.-ul-, Hussain Z. Study of ochratoxin A (OTA)-induced oxidative stress markers in broiler chicks. Toxin Reviews, 2017, 36(4): 270-274 (doi: 10.1080/15569543.2017.1303780).
  • Tong C., Li P., Yu L.-H., Li L., Li K., Chen Y., Yang S.H., Long M. Selenium-rich yeast attenuates ochratoxin A-induced small intestinal injury in broiler chickens by activating the Nrf2 pathway and inhibiting NF-KB activation. Journal of Functional Foods, 2020, 66: 103784 (doi: 10.1016/j.jff.2020.103784).
  • Al-Waeli A., Zoidis E., Pappas A., Demiris N., Zervas G., Fegeros K. The role of organic selenium in cadmium toxicity: effects on broiler performance and health status. Animal, 2013, 7(3): 386-393 (doi: 10.1017/S1751731112001590).
  • Xu F., Liu S., Li S. Effects of selenium and cadmium on changes in the gene expression of immune cytokines in chicken splenic lymphocytes. Biological Trace Element Research, 2015, 165: 214-221 (doi: 10.1007/s12011-015-0254-2).
  • Shaikh Z.A. Vu T.T., Zaman K. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicology and Applied Pharmacology, 1999, 154(3): 256-263 (doi: 10.1006/taap.1998.8586).
  • Zhao W., Liu W., Chen X., Zhu Y., Zhang Z., Yao H., Xu S. Four endoplasmic reticulum resident selenoproteins may be related to the protection of selenium against cadmium toxicity in chicken lymphocytes. Biological Trace Element Research, 2014, 161: 328-333 (doi: 10.1007/s12011-014-0135-0).
  • Li J.-L., Jiang C.-Y., Li S., Xu S.-W. Cadmium induced hepatotoxicity in chickens (Gallus do-mesticus) and ameliorative effect by selenium. Ecotoxicology and Environmental Safety, 2013, 96: 103-109 (doi: 10.1016/j.ecoenv.2013.07.007).
  • Gao J., Lin H., Wang X., Song Z., Jiao H. Vitamin E supplementation alleviates the oxidative stress induced by dexamethasone treatment and improves meat quality in broiler chickens. Poultry Science, 2010, 89(2): 318-327 (doi: 10.3382/ps.2009-00216).
  • Lin H., Decuypere E., Buyse J. Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus): 1. Chronic exposure. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2004, 139(4): 737-744 (doi: 10.1016/j.cbpc.2004.09.013).
  • Chen X., Zhang L., Li J., Gao F., Zhou G. Hydrogen peroxide-induced change in meat quality of the breast muscle of broilers is mediated by ROS generation, apoptosis, and autophagy in the NF-kB signal pathway. Journal of Agricultural and Food Chemistry, 2017, 65(19): 3986-3994 (doi: 10.1021/acs.jafc.7b01267).
  • Rosenvold K., Andersen H.J. Factors of significance for pork quality — a review. Meat Science, 2003, 64(3): 219-237 (doi: 10.1016/S0309-1740(02)00186-9).
  • Горлов И.Ф., Тихонов С.Л., Тихонова Н.В. Стрессоустойчивость как фактор формирования качества мяса с нехарактерным ходом автолиза. Индустрия питания, 2016, 1: 44-53.
  • Madkour M., Salman F.M., El-Wardany I., Abdel-Fattah S.A., Alagawany M., Hashem N.M., Abdelnour S.A., El-Kholy M.S., Dhama K. Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. Journal of Thermal Biology, 2022, 103: 103169 (doi: 10.1016/j.jtherbio.2021.103169).
  • Surai P.F. Selenium in poultry nutrition and health. Wageningen, The Netherlands, Wageningen Academic Publishers, 2018 (doi: 10.3920/978-90-8686-865-0).
  • Некрасов Р.В., Боголюбова Н.В., Семенова А.А., Насонова В.В., Полищук Е.К. Влияние дигидрокверцетина на клинические и биохимические показатели крови у свиней в условиях стрессовых нагрузок. Вопросы питания, 2021, 90, 1(533): 74-84 (doi: 10.33029/00428833-2021-90-1-74-84).
  • Некрасов Р.В., Боголюбова Н.В., Фомичев Ю.П., Чабаев М.Г., Семенова А.А., Насонова В.В. Природные адаптогены в кормлении свиней. Мат. Межд. науч.-практ. конф. «Актуальные проблемы инновационного развития животноводства». Брянск, 2019: 369-373.
  • Semenova A., Kuznetsova T., Nasonova V., Nekrasov R., Bogolubova N. Effect of modelled stress and adaptogens on microstructural characteristics of pork from fast-growing hybrid animals. Potravinarstvo, 2020, 14(1): 656-663 (doi: 10.5219/1388).
  • Семенова А.А., Кузнецова Т.Г., Насонова В.В., Некрасов Р.В., Боголюбова Н.В., Цис Е.Ю. Использование антиоксидантов в качестве адаптогенов для свиней (Sus scrofa domesticus erxleben, 1777) (мета-анализ). Сельскохозяйственная биология, 2020, 55(6): 1107-1125 (doi: 10.15389/agrobiology.2020.6.1107rus).
  • Semenova A.A.,Nasonova V.V., Kuznetsova T.G., Tunieva E.K., Bogolyubova N.V., Nekrasov R.V. A study on the effect of dihydroquercetin added into a diet of growing pigs on meat quality. Journal of Animal Science, 2020, 98(s4): 364 (doi: 10.1093/jas/skaa278.639).
  • Семенова А.А., Насонова В.В., Некрасов Р.В., Боголюбова Н.В., Мишуров А.В. Изучение влияния скармливания дигидрокверцетина на антиоксидантный статус свиней и устойчивость продуктов убоя к развитию окислительных процессов. Все о мясе, 2020, 5S: 318-320 (doi: 10.21323/2071-2499-2020-5S-318-320).
  • Zhao W., Li, J., Xing T., Zhang L., Gao F. Effects of guanidinoacetic acid and complex antiox-idant supplementation on growth performance, meat quality, and antioxidant function of broiler chickens. Journal of the Science of Food and Agriculture, 2021, 101(9): 3961-3968 (doi: 10.1002/jsfa.11036).
  • Abu Hafsa S.H., Ibrahim S.A. Effect of dietary polyphenol-rich grape seed on growth performance, antioxidant capacity and ileal microflora in broiler chicks. Journal of Animal Physiology and Animal Nutrition, 2018, 102(1): 268-275 (doi: 10.1111/jpn.12688).
  • Gouda A., Amer S.A., Gabr S., Tolba S.A. Effect of dietary supplemental ascorbic acid and folic acid on the growth performance, redox status, and immune status of broiler chickens under heat stress. Tropical Animal Health and Production, 2020, 52(6): 2987-2996 (doi: 10.1007/s11250-020-02316-4).
  • Pardue S.L., Thaxton J.P. Ascorbic acid in poultry. A review. World's Poultry Science Journal, 1986, 42(2): 107-123 (doi: 10.1079/WPS19860009).
  • Herrera E., Barbas C. Vitamin E: action, metabolism and perspectives. Journal of Physiology and Biochemistry, 2001, 57: 43-56 (doi: 10.1007/BF03179812).
  • Ulatowski L., Manor D. Vitamin E trafficking in neurologic health and disease. Annual Review of Nutrition, 2013, 33: 87-103 (doi: 10.1146/annurev-nutr-071812-161252).
  • Khan R.U., Rahman Z.U., Nikousefat Z., Javdani M., Tufarelli V., Dario C., Selvaggi M., Laudadio V. Immunomodulating effects of vitamin E in broilers. World's Poultry Science Journal, 2012, 68(1): 31-40 (doi: 10.1017/S0043933912000049).
  • Klasing K.C., Korver D.R. Nutritional diseases. In: Diseases of poultry. V. 2. Wiley-Blackwell, 2020: 1257-1285.
  • Niu Z.Y., Min Y.N., Liu F.Z. Dietary vitamin E improves meat quality and antioxidant capacity in broilers by upregulating the expression of antioxidant enzyme genes. Journal of Applied Animal Research, 2017, 46(1): 397-401 (doi: 10.1080/09712119.2017.1309321).
  • Van Vleet J.V., Ferrans V.J. Ultrastructural changes in skeletal muscle of selenium-vitamin E-deficient chicks. American Journal of Veterinary Research, 1976, 37: 1081-1089.
  • Awadin W.F., Eladl A.H., El-Shafei R.A., El-Adl M.A., Ali H.S. Immunological and pathological effects of vitamin E with Fetomune Plus® on chickens experimentally infected with avian influenza virus H9N2. Veterinary Microbiology, 2019, 231: 24-32 (doi: 10.1016/j.vetmic.2019.02.028).
  • Ibrahim H.A.-F., Aziz A. Alleviating transport stress of broiler using vitamin C and acetyl salicylic acid. Journal of Animal and Poultry Production, 2021, 12(5): 169-173 (doi: 10.21608/jappmu.2021.178565).
  • Shakeri M., Oskoueian E., Le H.H., Shakeri M. Strategies to combat heat stress in broiler chickens: unveiling the roles of selenium, vitamin E and vitamin C. Veterinary Sciences, 2020, 7(2): 71 (doi: 10.3390/vetsci7020071).
  • Harrison F.E., May J.M. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radical Biology and Medicine, 2009, 46(6): 719-730 (doi: 10.1016/j.freeradbiomed.2008.12.018).
  • Peeters E., Neyt A., Beckers F., De Smet S., Aubert A., Geers R. Influence of supplemental magnesium, tryptophan, vitamin C, and vitamin E on stress responses of pigs to vibration. Journal of Animal Science, 2005, 83(7): 1568-1580 (doi: 10.2527/2005.8371568x).
  • Sorice A., Guerriero E., Capone F., Colonna G., Castello G., Costantini, S. Ascorbic acid: its role in immune system and chronic inflammation diseases. Mini-Reviews in Medicinal Chemistry, 2014, 14(5): 444-452 (doi: 10.2174/1389557514666140428112602).
  • Ahmadu S., Mohammed A.A., Buhari H., Auwal A. An overview of vitamin C as an antistress in poultry. Malaysian Journal of Veterinary research, 2016; 7(2): 9-22.
  • Wei J., Lei G.-h., Fu L., Zeng C., Yang T., Peng S.-f. Association between dietary vitamin C intake and non-alcoholic fatty liver disease: a cross-sectional study among middle-aged and older adults. PLoS ONE, 2016, 11(1): 11e0147985 (doi: 10.1371/journal.pone.0147985).
  • Mahmoud K.Z., Edens F.W., Eisen E.J., Havenstein G.B. Effect of ascorbic acid and acute heat exposure on heat shock protein 70 expression by young white Leghorn chickens. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 2003, 136(4): 329-335 (doi: 10.1016/j.cca.2003.10.006).
  • Whitehead C.C., Keller T. An update on ascorbic acid in poultry. World's Poultry Science Journal, 2003, 59(2): 161-184 (doi: 10.1079/WPS20030010).
  • Rafiee F., Mazhari M., Ghoreishi M., Esmaeilipour O. Effect of lemon verbena powder and vitamin C on performance and immunity of heat-stressed broilers. Journal of animal physiology and animal nutrition, 2016, 100(5): 807-812 (doi: 10.1111/jpn.12457).
  • Рудаков О.Б., Рудакова Л.В. Дигидрокверцетин в мясной продукции. Мясные технологии, 2020, 5: 44-47 (doi: 10.33465/2308-2941-2020-05-44-47).
  • Dueñas M., González-Manzano S., González-Paramás A., Santos-Buelga C. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51: 443-449 (doi: 10.1016/j.jpba.2009.04.007).
  • Li Y., Yao J., Han C., Yang J., Chaudhry M., Wang S., Liu H., Yin Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3): 167 (doi: 10.3390/nu8030167).
  • Wang S., Yao J., Zhou B., Yang J., Chaudry M.T., Wang M., Xiao F., Li Y., Yin W. Bacterio-static effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. Journal of Food Protection, 2018, 81(1): 68-78 (doi: 10.4315/0362-028X.JFP-17-214).
  • Lesjak M., Beara I., Simin N., Pintac D., Majkic T., Bekvalac K., Orcic D., Mimica-Dukic N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods, 2018, 40: 68-75 (doi: 10.1016/j.jff.2017.10.047).
  • Hong Z., Piao M. Effect of quercetin Monoglycosides on oxidative stress and gut microbiota diversity in mice with dextran sodium Sulphate-induced colitis. BioMed Research International, 2018, 2018: 8343052 (doi: 10.1155/2018/8343052).
  • Saeed M., Naveed M., Arain M., Arif M., Abd El-Hack M.E., Alagawany M, Sun C. Quercetin: nutritional and beneficial effects in poultry. World's Poultry Science Journal, 2017, 73(2): 355-364 (doi: 10.1017/S004393391700023X).
  • Abdel-Latif M.A., Elbestawy A.R., El-Far A.H., Noreldin A.E., Emam M., Baty R.S., Al-badrani G.M., Abdel-Daim M.M., El-Hamid H.S.A. Quercetin dietary supplementation advances growth performance, gut microbiota, and intestinal mRNA expression genes in broiler chickens. Animals, 2021, 11(8): 2302 (doi: 10.3390/ani11082302).
  • Koudoufio M., Desjardins Y., Feldman F. Spahis S., Delvin E., Levy E. Insight into polyphenol and gut microbiota crosstalk: are their metabolites the key to understand protective effects against metabolic disorders? Antioxidants, 2020, 9(10): 982 (doi: 10.3390/antiox9100982).
  • Фомичев Ю.П., Никанова Л.А., Лашин С.А. Дигидрокверцетин и арабиногалактан — природные биорегуляторы, применение в сельском хозяйстве и пищевой промышленности. Вестник Мичуринского государственного аграрного университета, 2018, 3: 21-32.
  • Фомичев Ю.П. Флавоноид-дигидрокверцетин в питании человека и животных, сохранности продукции сельского хозяйства. Эффективное животноводство, 2018, 4(143): 58-60.
  • Никанова Л.А. Влияние антиоксиданта дигидрокверцетина и пребиотика арабиногалак-тана на мясную продуктивность, гистологию тканей, органов и желез внутренней секреции свиней. Зоотехния, 2020, 6: 12-15.
  • Никанова Л.А. Влияние дигидрокверцетина и арабиногалактана на промежуточный обмен и резистентность организма поросят. Российский журнал Проблемы ветеринарной санитарии, гигиены и экологии, 2020, 1(33): 85-91 (doi: 10.36871/vet.san.hyg.ecol.202001013).
  • Jang I.-S., Ko Y.-H., Moon Y.-S., Sohn S.-H. Effects of vitamin C or E on the pro-inflammatory cytokines, heat shock protein 70 and antioxidant status in broiler chicks under summer conditions. Asian-Australas. Journal of Animal Science, 2014, 27(5): 749-756 (doi: 10.5713/ajas.2013.13852).
  • Asensio X., Abdelli N., Piedrafita J., Soler M.D., Barroeta A.C. Effect of fibrous diet and vitamin C inclusion on uniformity, carcass traits, skeletal strength, and behavior of broiler breeder pullets. Poultry Science, 2020, 99(5): 2633-2644 (doi: 10.1016/j.psj.2020.01.015).
  • Kutlu H.R., Forbes J.M. Changes in growth and blood parameters in heat-stressed broiler chicks in response to dietary ascorbic acid. Livestock Production Science, 1993, 36(4): 335-350 (doi: 10.1016/0301-6226(93)90050-R).
  • Lohakare J.D., Ryu M.H., Hahn T.-W., Lee J.K., Chae B.J. Effects of supplemental ascorbic acid on the performance and immunity of commercial broilers. Journal of Applied Poultry Research, 2005, 14: 10-19 (doi: 10.1093/japr/14.1.10).
  • Attia Y.A., Abd El-Hamid A.EH.E, Abedalla A.A., Berika M.A., Al-Harthi M.A., Kucuk O., Sahin K., Abou-Shehema B.M. Laying performance, digestibility and plasma hormones in laying hens exposed to chronic heat stress as affected by betaine, vitamin C, and/or vitamin E supplementation. Springerplus, 2016, 5(1): 1619 (doi: 10.1186/s40064-016-3304-0).
  • Nematollahi F., Shomali T., Abdi-Hachesoo B., Khodakaram-Tafti A. Effect of prophylactic vitamin C administration on the efficiency of florfenicol or sulfadiazine-trimethoprim antimicrobial therapy in chickens with staphylococcal arthritis. Tropical Animal Health and Production, 2022, 54: 25 (doi: 10.1007/s11250-021-03033-2).
  • Zangeneh S., Torki M., Lotfollahian H., Abdolmohammadi A. Effects of dietary supplemental lysophospholipids and vitamin C on performance, antioxidant enzymes, lipid peroxidation, thyroid hormones and serum metabolites of broiler chickens reared under thermoneutral and high ambient temperature. Journal of Animal Physiology and Animal Nutrition, 2018, 102(6): 1521-1532 (doi: 10.1111/jpn.12935).
  • Yigit A.A., Yarim G. Effects of increases in vitamin C supplementation in the laying hen rations on serum concentrations of vitamin C and vitamin A. Proc. 1th Int. Eurasian Conf. on biological and chemical sciences «EurasianBioChem 2018». Ankara, 2018: 1256.
  • Cilev G., Crnec I., Sefer D., Markovic R., Kochoski L., Stojanovski S., Pacinovski N. The influence of vitamin C over the production performances of the laying hens in conditions of thermal stress. Zhivotnovadni Nauki, 2020, 57(1): 29-35.
  • Ruzic Z., Kanacki Z., Milosevic V., Zekic-Stosic M., Savic S., Popovska-Percinic F., Pend-ovski L., Paras S. The effect of vitamin C on specific hematologic parameters in broilers during heat stress. Proc. 5th Int. Vet-Istanbul Group Congress and 8th Int. Scien. Meeting "Days of veterinary medicine 2018". Scopie, 2018.
  • Mishra A., Patel P., Jain A., Shakkarpude J., Sheikh A.A. Effect of ascorbic acid supplementation on corticosterone levels and production parameters of white leghorn exposed to heat stress. International Journal of Chemical Studies, 2019, 7(6): 930-934.
  • Abudabos M.A., Al-Owaimer A.N., Hussein E.O.S., Ali M.H., Al-Ghadi M.Q. Effect of natural ascorbic acid on performance and certain haemato-biochemical values in layers exposed to heat stress. Journal of Animal and Plant Sciences, 2018, 28(2): 441-448.
  • Abdalla A.M., Erneo B.O. Effect of ascorbic acid supplementation methods on some productive and physiological performances of laying hens. International Journal of Research Studies in Biosciences, 2018, 6(1): 10-15 (doi: 10.20431/2349-0365.0601003).
  • Jain G., Neeraj, Pandey R. Effect of vitamin C on growth performance of caged broilers. Advances in Bioresearch, 2018, 9(2): 178-181.
  • Singh R., Mandal A.B. Efficacy of vitamin C in ameliorating ochratoxicosis in broiler chicken. Indian Journal of Animal Nutrition, 2018, 35(4): 436-443 (doi: 10.5958/2231-6744.2018.00066.X).
  • Alshelmani M.I., Salem N.A., Salim A.A., Sakal I. Effect of dietary vitamin C and corn oil supplementation on broiler performance under heat stress. International Journal of Current Microbiology and Applied Sciences, 2020, 9(4): 225-230 (doi: 10.20546/ijcmas.2020.904.027).
  • Hatab M. Effect of saccharomyces cerevisiae and vitamin c supplementation on performance of broilers subjected to ochratoxin a contamination. Egyptian Poultry Science Journal, 2021, 30(I): 89-113 (doi: 10.13140/RG.2.2.29433.39526).
  • Saiz del Barrio A., Mansilla W.D., Navarro-Villa A., Mica J.H., Smeets J.H., Hartog L.A., Gar-cia-Ruiz A.I. Effect of mineral and vitamin C mix on growth performance and blood corti-costerone concentrations in heat-stressed broilers. Journal of Applied Poultry Research, 2020, 29(1): 23-33 (doi: 10.1016/j.japr.2019.11.001).
  • Hashem M.A., Abd El Hamied S.S., Ahmed E.M.A., Amer S.A., Hassan A.M. Alleviating effects of vitamins C and E supplementation on oxidative stress, hematobiochemical, and histopatholog-ical alterations caused by copper toxicity in broiler chickens. Animals, 2021, 11(6): 1739 (doi: 10.3390/ani11061739).
  • Kholis N., Suryadi U., Roni F. Pengaruh suplementasi vitamin C dan jarak transportasi terhadap penyusutan bobot badan broiler. Jurnal Ilmu Peternakan Terapan, 2018, 2(1): 27-33 (doi: 10.25047/jipt.v2i1.1166).
  • Vieira V., Marx F.O., Bassi L.S., Santos M.C., Oba A., Oliveira S.G., Maiorka A. Effect of age and different doses of dietary vitamin E on breast meat qualitative characteristics of finishing broilers. Animal Nutrition, 2021, 7(1): 163-167 (doi: 10.1016/j.aninu.2020.08.004).
  • Kaiser M.G., Block S.S., Ciraci C., Fang W., Sifri M., Lamont S.J. Effects of dietary vitamin E type and level on lipopolysaccharide-induced cytokine mRNA expression in broiler chicks. Poultry Science, 2012, 91(8): 1893-1898 (doi: 10.3382/ps.2011-02116).
  • Pitargue F.M., Kim J.H., Goo D., Delos Reyes J.B., Kil D.Y. Effect of vitamin E sources and inclusion levels in diets on growth performance, meat quality, alpha-tocopherol retention, and intestinal inflammatory cytokine expression in broiler chickens. Poultry Science, 2019, 98(10): 4584-4594 (doi: 10.3382/ps/pez149).
  • Ding X.M., Mu Y.D., Zhang K.Y., Wang J.P., Bai S.P., Zeng Q.F., Peng H.W. Vitamin E improves antioxidant status but not lipid metabolism in laying hens fed a aged corn-containing diet. Animal Bioscience, 2021, 34(2): 276-284 (doi: 10.5713/ajas.19.0934).
  • Mazur-Kusnirek M., Antoszkiewicz Z., Lipinski K., Kaliniewicz J., Kotlarczyk S. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed low-quality oil. Archives Animal Breeding, 2019, 62(1): 287-296 (doi: 10.5194/aab-62-287-2019).
  • Yang J., Ding X.M., Bai S.P., Wang J.P., Zeng Q.F., Peng H.W., Xuan Y., Su Z.W., Zhang K.Y. Effects of dietary vitamin E supplementation on laying performance, hatchability, and antioxidant status in molted broiler breeder hens. Journal of Applied Poultry Research, 2021, 30(3): 100184 (doi: 10.1016/j.japr.2021.100184).
  • Livingston M.L., Pokoo-Aikins A., Frost T., Laprade L., Hoang V., Nogal B., Phillips C., Cow-ieson A.J. Effect of heat stress, dietary electrolytes, and vitamins E and C on growth performance and blood biochemistry of the broiler chicken. Frontiers in Animal Science, 2022, 3: 807267 (doi: 10.3389/fanim.2022.807267).
  • Moustafa K.-E.M.El., Mikhail W.Z.A., Elsherif H.M.R., El-tybe M.A. Effect of nano-selenium and vitamin E on growth performance and blood constituents of broiler chickens. Turkish Online Journal of Qualitative Inquiry, 2021, 7(4): 468-479.
  • Gomes P.E.B., Lopes J.B., da Silva Costa Moreira E.M., Merval R.R., Moreira Filho M.A., de Lemos J.G.S. Organic zinc and vitamin E supplementation for broiler chickens under natural heat stress conditions. Acta Veterinaria Brasilica, 2020, 14(4): 237-243 (doi: 10.21708/avb.2020.14.4.5151).
  • Gul S., Khan R., Kashif M., Ahmad M., Hussain R., Khan A. Amelioration of toxicopathological effects of thiamethoxam in broiler birds with vitamin E and selenium. Toxin Reviews, 2022, 41(1): 218-228 (doi: 10.1080/15569543.2020.1864647).
  • Leskovec J., Levart A, Peric L., Dukic Stojcic M., Tomovic V., Pirman T., Salobir J., Rezar V. Antioxidative effects of supplementing linseed oil-enriched diets with a-tocopherol, ascorbic acid, selenium, or their combination on carcass and meat quality in broilers. Poultry Science, 2019, 98(12): 6733-6741 (doi: 10.3382/ps/pez389).
  • Romero C., Nardoia M., Arija I., Viveros A., Ana I.R., Prodanov M., Chamorro S. Feeding broiler chickens with grape seed and skin meals to enhance a- and y-tocopherol content and meat oxidative stability. Antioxidants, 2021, 10(5): 699 (doi: 10.3390/antiox10050699).
  • Wang J., Clark D.L., Jacobi S.K., Velleman S.G. Effect of vitamin E and omega-3 fatty acids early posthatch supplementation on reducing the severity of wooden breast myopathy in broilers. Poultry Science, 2020, 99(4): 2108-2119 (doi: 10.1016/j.psj.2019.12.033).
  • Perez D.M., Richards M.P., Parker R.S., Berres M.E., Wright A.T., Sifri M., Sadler N.C., Tati-yaborworntham N., Li N. Role of cytochrome p450 hydroxylase in the decreased accumulation of vitamin E in muscle from Turkeys compared to that from chickens. Journal of Agricultural and Food Chemistry, 2016, 64(3): 671-680 (doi: 10.1021/acs.jafc.5b05433).
  • Karadas F., Erdogan S., Kor D., Oto G., Uluman M. The effects of different types of antioxidants (Se, vitamin E and carotenoids) in broiler diets on the growth performance, skin pigmentation and liver and plasma antioxidant concentrations. Revista Brasileira de Ciencia Avifola, 2016, 18(1): 101-116 (doi: 10.1590/18069061-2015-0155).
  • Zdanowska-Sasiadek Z., Michalczuk M., Damaziak K., Niemiec J., Polawska E., Gozdowski D., Rozanska E. Effect of vitamin E supplementation on growth performance and chicken meat quality. European Poultry Science, 2016, 80: 1-14 (doi: 10.1399/eps.2016.152).
  • Goliomytis M., Tsoureki D., Simitzis P.E., Charismiadou M.A., Hager-Theodorides A.L., Deli-georgis S.G. The effects of quercetin dietary supplementation on broiler growth performance, meat quality, and oxidative stability. Poultry Science, 2014, 93(8): 1957-1962 (doi: 10.3382/ps.2013-03585).
  • Pirgozliev V., Westbrook C., Woods S., Karagecili M.R., Karadas F., Rose S.P., Mansbridge S.C. 2019 Feeding dihydroquercetin to broiler chickens. British Poultry Science, 2019, 60(3): 241-245 (doi: 10.1080/00071668.2018.1556387).
  • Торшков А.А., Герасименко В.В. Изменение химического состава мяса цыплят-бройлеров при использовании арабиногалактана. Известия Оренбургского государственного аграрного университета, 2010, 2(26): 167-169.
  • Fomichev Y., Nikanova L., Lashin A. The effectiveness of using dihydroquercetin (taxifolin) in animal husbandry, poultry and apiculture for prevention of metabolic disorders, higher antioxi-dative capacity, better resistence and realisation of a productive potential of organism. Journal of International Scientific Publications, 2016, 4: 140-159.
Еще
Статья обзорная