Application of AI for monitoring and optimizing IT infrastructure: economic prospects for implementing predictive analytics in enterprise operations
Автор: Bushuev S.
Журнал: Международный журнал гуманитарных и естественных наук @intjournal
Рубрика: Экономические науки
Статья в выпуске: 8-3 (95), 2024 года.
Бесплатный доступ
This research explores the application of artificial intelligence (AI) in monitoring and optimizing IT infrastructure, with a focus on the economic prospects of implementing predictive analytics (PA) in enterprise operations. It examines the benefits of AI-powered technologies and PA, including reduced downtime, increased efficiency, and enhanced decision-making capabilities. It addresses the challenges associated with implementing these technologies, such as data privacy concerns and organizational barriers. Through case studies examples, it demonstrates how AI can transform IT infrastructure management, offering enterprises a pathway to sustainable growth and long-term success.
It infrastructure, artificial intelligence (ai), machine learning (ml), optimization, predictive analytics, monitoring
Короткий адрес: https://sciup.org/170206382
IDR: 170206382 | DOI: 10.24412/2500-1000-2024-8-3-125-129
Список литературы Application of AI for monitoring and optimizing IT infrastructure: economic prospects for implementing predictive analytics in enterprise operations
- McMillan L, Varga L. A review of the use of artificial intelligence methods in infrastructure systems // Engineering Applications of Artificial Intelligence. 2022. Vol. 116. P. 105472.
- Tiumentsev D.V., Shaikhulov E.A. Synthesis of DevOps and ML: optimizing IT workflow // Modern scientific researches and innovations. 2024. № 2. [Electronic journal]. URL: https://web.snauka.ru/en/issues/2024/02/101567 (date of application: 07.07.2024).
- The AI evolution: Reality justifies the hype. Bank of America (BofA) Institute. 2023. 11 p.
- The state of AI in early 2024: Gen AI adoption spikes and starts to generate value. McKin-sey & Company. 2024. 23 p.
- Pshychenko D. Evaluation of the effectiveness of implementing AI-based CRM systems // Innovacionnaja nauka. 2024. № 7-2/2024. P. 40-45.
- Nzeako G., Akinsanya M.O., Popoola O.A., Chukwurah E.G., Okeke C.D. The role of AI-Driven predictive analytics in optimizing IT industry supply chains // International Journal of Management & Entrepreneurship Research. 2024. Vol. 6 (5). P. 1489-97.
- Korostin O. Application of NLP technologies for data extraction from text messages in maritime logistics // The scientific heritage. 2024. № 141. P. 42-45.
- New Series: Creating Media with Machine Learning / Netflix / URL: https://netflixtechblog.com/new-series-creating-media-with-machine-leaming-5067ac110bcd (date of application: 07.07.2024).
- BofA's Erica Surpasses 2 Billion Interactions, Helping 42 Million Clients Since Launch / Bank of America // URL: https://newsroom.bankofamerica.com/content/newsroom/press-releases/2024/04/bofa-s-erica-surpasses-2-billion-interactions--helping-42-millio.html (date of application: 16.07.2024).
- Chethana C., Shaik M., Pareek P. Artificial Intelligence Applications for Process Optimization in Small Software Firms. Available at SSRN 4466032. 2023.
- Stepanov M. The application of machine learning for optimizing maintenance processes and energy management of electric drives // Cold Science. №2/2024. P. 22-30.