Application of am fungi with Bradyrhizobium japonicum in improving growth, nutrient uptake and yield of Vigna radiata L. under saline soil

Автор: Kadian Nisha, Yadav Kuldeep, Aggarwal Ashok

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.10, 2014 года.

Бесплатный доступ

A pot experiment was conducted under polyhouse conditions, to evaluate the effect of two different arbuscular mycorrhizal fungi ( G. mosseae and A. laevis ) in combination with Bradyrhizobium japonicum on growth and nutrition of mungbean plant grown under different salt stress levels (4 dS m −1, 8dS m −1 and 12 dS m −1). It was found that under saline conditions, mycorrhizal fungi protect the host plant against the detrimental effect of salinity. The AM inoculated plants showed positive effects on plant growth, dry biomass production, chlorophyll content, mineral uptake, electrolyte leakage, proline, protein content and yield of mungbean plants in comparison to non-mycorrhizal ones but the extent of response varied with the increasing level of salinity. In general, the reduction in Na uptake along with associated increase in P, N, K, electrolyte leakage and high proline content were also found to be better in inoculated ones. The overall results demonstrate that the co-inoculation of microbes with AM fungi promotes salinity tolerance by enhancing nutrient acquisition especially phosphorus (P), producing plant growth hormones, improving rhizospheric and condition of soil by altering the physiological and biochemical properties of the mungbean plant.

Еще

Vigna radiata, arbuscular mycorrhizal fungi, bradyrhizobium japonicum, soil salinity, mineral uptake, proline

Короткий адрес: https://sciup.org/14323882

IDR: 14323882

Список литературы Application of am fungi with Bradyrhizobium japonicum in improving growth, nutrient uptake and yield of Vigna radiata L. under saline soil

  • Abdel-Fattah Gamal, M., (2001). Measurement of the viability of arbuscular-mycorrhizal fungi using three different stains; relation to growth and metabolic activities of soybean plants. Microbiol. Res. 156, 359-367
  • Adholeya, A., Gaur, A., (1994). Estimation of VAM fungal spores in soil. Mycorrhiza News 6, 10-11
  • Ahmad, M.S.A., Hussain, M., Ijaz, S., Alvi, A.K., (2008). Photosynthetic performance of two mung bean (Vigna radiata (L.) cultivars under lead and copper stress. Inter. J. Agri. Biol. 10, 167-172
  • Al-Khaliel, A.S., (2010). Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. Plant Soil and Environment 56, 318-324
  • Al-Karaki, G.N., (2000). Growth and mineral acquisition by mycorrhizal tomato grown under salt stress. Mycorrhiza. 10, 51-54
  • Allen, E.B., Cunningham, G.L., (1983). Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol. 93, 227-236
  • Arnon, D.T., (1949). Copper enzyme in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol. 24, 1-5
  • Ashraf, M., Fooland, M.R., (2007). Roles of glycine betaine and Proline in improving plant abiotic stress resistance. Environ. Experi. Bot. 59, 206-216
  • Bates, L.S., Waldren, R.P., Teare, I.D., (1973). Rapid determination of free proline for water stress studies. Plant Soil. 39, 205-207
  • Belew, D., Astatki, T., Mokashi, M.N., Getachew, Y., Patil, C.P., (2010). Effects of Salinity and Mycorrhizal Inoculation (Glomus fasciculatum) on Growth Responses of Grape Rootstocks (Vitis spp.). S. Afri. J. Enol. Viticul. 31, 82-88
  • Bradford, M.M., (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem. 72, 248-254
  • Brounce, F., (2002). Soya is flavones: a new and promising ingredient for the health foods sector. Food Res. Int. 35, 187-193
  • Cantrell, I.C., Linderman, R.G., (2001). Pre-inoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil. 233, 269-281
  • Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C.M., Rea, E., (2008). Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol. and Fert. Soil. 44, 501-509
  • Dionisio-Sese, M.L., Tobita, S., (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135, 1-9
  • Dixon, R.K., Garg, V.K., Rao, M.V., (1993). Inoculation of Leucaena and Prosopis seedlings with Glomus and Rhizobium species in saline soil: rhizosphere relations and seedlings growth. Arid Soil Res. Rehab. 7, 133-144
  • Evelin, H., Kapoor, R., Giri, B., (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Bot. 104, 1263-1280
  • Ezawa, T., Saito, M., Yoshida, T., (1994). Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi Glomus spp, and Gigaspora spp. Plant Soil. 176, 57-63
  • Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C., Rengel, Z., (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhizal is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 12, 185-199
  • Flowers, T.J., Torke, P.F., Yeo, A.R., (1977). The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol. 28, 89-121
  • Frechill, S., Lasa, B., Ibarretxe, L., Lamsfus, C., Aparicio-Trejo, P., (2001). Pea response to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). J. Plant Growth Regul. 35, 171-179
  • Garg, N., Manchanda, G., (2008). Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeonpea). J. Plant Growth Regul. 27, 115-124
  • Gianinazzi, S.V., Gianinazzi-Pearson, Dexheimer, J., (1979). Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizal. III. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected by Glomus mosseae (Nicol. and Gerd.) New Phytol. 84, 489-500
  • Gill, T.S., Singh, R.S., (2002). Effects of Glomus fascicula-tum and Rhizobium Inoculation on V.A. Mycorrhizal Colonization and Plant Growth of Chickpea. Indian Phytopath. 32, 162-166
  • Giri, B., Mukerji, K.G., (2004). Mycorrhizal inoculants alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza. 14, 307-312
  • Giri, B., Mukerji, K.G., (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth biomass and mineral nutrition of Acacia auriculiformis. Biol. Fertil. Soils. 38, 170-175
  • Giri, B., Mukerji, K.G., (2007). Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated k+/Na+ ratios in root and shoot tissuses. Microb. Ecol. 54, 753-760
  • Goas, G., Goas, M., Larhar, F., (1982). Accumulation of free praline and glycine betaine in Aster tripolium subjected to a saline shock: a kinetic study related to light period. Plant Physiol. 55, 383-388
  • Goudarzi, M., Pakniyat, H., (2009). Salinity causes increase in proline and protein contents and peroxidase activity in wheat cultivars. J. App. Sci. 9, 348-354
  • Guether, M., Neuhauser, B., Balestrini, R., Dynowski, M., Ludewig, U., Bonfante, P., (2009). A mycorrhizal-specific ammonium transporter from Lotus japonicas acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol. 150, 73-83
  • Hajiboland, R., Joudmand, A., (2009). The K/Na replacement and function of antioxidant defense system in sugar beet (Beta vulgaris L.) cultivaris. Plant and Soil Sci. 59, 246-259
  • Jackson, M.L., (1973). Soil Chemical Analysis Prentice Hall, New Delhi, pp. 485
  • Kadian, N., Yadav, K., Badda, N., Aggarwal, A., (2013a). AM fungi ameliorates growth, yield and nutrient uptake in Cicer arietinum (L.) under salt stress. Russ. Agri. Sci. 39, 321-329
  • Kadian, N., Yadav, K., Aggarwal, A., (2013). Significance of bioinoculants in promoting growth, nutrient uptake and yield of Cyamopsis tetragonoloba (L.) “Taub.’’ Europ. J. Soil Biol. 58, 66-72
  • Kaprelynts, L.V., Kisilev, S.V., Iorgachova, E.G., (2003). Soybean isoflavones and prospects of their therapeutic application. Voprosy Pitaniya. 72, 36-41
  • Kaul S, Sharma SS, Mehta IK (2008) Free radical scavenging potential of L-proline evidence from in vitro assays. Amino Acids 34, 315-320
  • Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, A.L., Cullu, M.A., (2009). The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci. Horti. 121, 1-6
  • Kumar, S.V., Tan, S.G., Quah, S.C., Yusoff, K., (2002). Isolation and characterization of seven tetranucleotide microsatellite loci in mungbean, Vigna radiata. Molecular Ecology Notes. 2, 293-295
  • Maathuis, F.J.M., Amtmann, A., (1999). K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann. Bot. 84, 123-133
  • Madhujith, T., Naczk, M., Shahidi, F., (2004). Antioxidant activity of common beans (Phaseolus vulgaris L.). J. Food Lipids. 11, 220-233
  • Menge, J.A., Timmer, L.M., (1982). Procedure for inoculation of plants with VAM in the laboratory, greenhouse and field. In: Methods and Principles of Mycorrhizal Research (Ed.) Schenck, N.C., American Phytopathological Society, St. Paul, 59-68
  • Morton, J.B., Benny, G.L., (1990). Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): A new order, Glomales, two new suborders, Glomineae and Gigasporineae, with an emendation of Glomaceae, Mycotaxon. 37, 471-491
  • Mukerji, K.G., (1996). Taxonomy of endomycorrhizal fungi, Advances in Botany, Mukerji, K.G., Mathur B, Chamola BP and Chitralekha P, Eds., New Delhi: APH Publ., pp. 211-221
  • Orlovich, D.A., Ahford, A.E., (1993). Polyphosphate granules are artifact of specimen preparation in the ectomycorrhizal fungus Pisolithus tinctorius. Protoplasma. 173, 91-102
  • Parida, A., Das, A.B., Das, P., (2002). NaCl stress causes changes in photo-synthetic pigments, proteins and other metabolic components in the leaves of a tree mangrove, Bruguiera parviflora, in hydroponic cultures. J. Plant Biol. 45, 28-36
  • Park, S.Y., Fung, P., Nishimura, N., (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Sci. 324, 1068-1071
  • Parkash, V., Sharma, S., Aggarwal, A., (2011). Symbiotic and synergistic efficacy of endomycorrhizae with Dendrocalamus strictus L. Plant Soil Environment 57, 447-452
  • Patreze, C.M., Cordeiro, L., (2004). Nitrogen fixing and vesicular arbuscular mycorrhizal symbiosis in some tropical legume trees of tribe Mimosaceae. Forest Eco. Manag. 196, 275-285
  • Phillips, J.M., Hayman, D.S., (1970). Improved procedures for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Trans. British Mycol. Soci. 55, 158-161
  • Porras Soriano, A., Soriano Martin, M.L., Porras Piedra, A., Azcón, R., (2009). Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J. Plant Physiol DOI: 10.1016/j.jplph.2009.02.010
  • Quilambo, O.A., (2000). Functioning of peanut (Arachis hypogaea L.) under nutrient deficiency and drought stress in relation to symbiotic associations. PhD thesis. University of Groningen, the Netherlands.Van Denderen B.V., Groningen. ISBN 903671284X
  • Rabie, G.H., (2005). Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater. Mycorrhiza. 15, 225-230
  • Richards, L.A., (1954). Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, Handbook no. 60. Washington, DC, 4-18
  • Ruiz-Lozano, J.M., Azcón, R., (2000). Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp from saline soils and Glomus deserticola under salinity. Mycorrhiza. 10, 137-143l
  • Salunke, B.K., Kotkar, H.M., Mendki, P.S., Upasani, S.M., Maheshwari, V.L., (2005). Efficacy of flavonoids in controlling Callosobruchus chinensis (L.) (Coleoptera: Bruchidae), a post-harvest pest of grain legumes. Crop Prot. 24, 888-893
  • Schenck, N.C., Perez, Y., (1990). Manual for the Identification of VA Mycorrhizal VAM Fungi, Florida, USA: Univ. of Florida, pp. 241
  • Sharifi, M., Ghorbanli, M., Ebrahimzadeh, H., (2007). Improved growth of salinity stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J. Plant Physiol. 164, 1144-1151
  • Shekoofeh, E., Sepideh, H., (2011). Effect of mycorrhizal fungi on some physiological characteristics of salt stressed Ocimum basilicum L. Irani. J. Plant Physiol. 1, 215-222
  • Shokri, S., Maadi, B., (2009). Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrium plants under salinity stress. J. Agro. 8, 79-83
  • Stewart, C.R., (1981). Proline accumulation: biochemical aspects. In: Paleg LG, Aspinall D (eds) Physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, pp 243-259
  • Tabatabai, M.A., Bremner, J.M., (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem. 1, 301-307
  • Tian, C.Y., Feng, G., Li, X.L., Zhang, F.S., (2004). Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of Plants. App. soil ecol. 26, 143-148
  • Turk, M.A., Assaf, T.A., Hameed, K.M., Tawaha, Al-A.M., (2006). 'Significance of mycorrhizae'. J. Agri. Sci. 2, 16-20
  • Walker, C., (1983). Taxonomic concepts in the Endogonaceae spore wall characteristics in species description, Mycotaxon. 18, 443-445
  • Weaver, R.W., Fredrick, L.R., (1982). Rhizobium, In: Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, second ed., Agronomy Monograph, No. 9 American Society of Agronomy, Madison. pp. 1043-1070
  • Wu, Q.S., Zou, Y.N., He, X.H., (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol. Plant. 32, 297-304
  • Yadav, K., Aggarwal, A., Singh, N., (2013). Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Ind. Crop Prod. 45, 88-93
  • Zhongoun, H., Chaoxing, H., Zhibin Zhirong, Z., Huaisong, W., (2007). Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf, B: Biointerfaces 59, 128-133
  • Zhu, X.C., Song, F.B., Xu, H.W., (2010). Arbuscular mycorrhizae improves low temp stress in maize via alterations in host water status and photosynthesis. Plant and Soil. 331, 129-137
  • Zuccarini, P., Okurowska, P., (2008). Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J. Plant Nutri. 31, 497-513
Еще
Статья научная