Application of DNA (RAPD) and ultrastructure to detect the effect of cadmium stress in Egyptian clover and Sudan grass plantlets

Автор: Aly Amina A.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.8, 2012 года.

Бесплатный доступ

Background In recent years, several plant species have been used as bioindicators to evaluate the toxicity of environmental contaminants on vegetal organisms. In this study, Egyptian clover and Sudan grass seedlings were grown in four cadmium (Cd) concentration levels (0.0, 25, 50 and 100 µM) in MS media to analyze growth responses, Cd accumulation in the shoots and roots of plantlets, proline contents, chlorophylls content and MDA levels of both plantlets. As well as RAPD analysis and leaves ultrastructure were detected. Results The results showed that there was a significant decrease in root and shoot lengths, Chl a, Chl b, total Chl and carotenoids contents for both Egyptian clover and Sudan grass. However, there was a significant increase in Cd accumulation, proline and malondialdehyde (MDA) levels. The genetic variation between Egyptian clover and Sudan grass were evaluated using random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) markers to establish specific DNA markers associated with Cd stress. The results of transimssion electron microscopy (TEM) showed a clear disorder in the Cd treated Egyptian clover and Sudan grass seedlings. Conclusion In conclusion, biochemical, molecular and ultrastructure changes in Egyptian clover and Sudan grass could be used as a useful biomarker assay for the detection of genotoxic effects of Cd stress on plants. However, it is necessary to be further confirmed and optimized in the future research.

Еще

Biomarker, cadmium stress, dna (rapd), genomic template stability, ultrastructure

Короткий адрес: https://sciup.org/14323592

IDR: 14323592

Список литературы Application of DNA (RAPD) and ultrastructure to detect the effect of cadmium stress in Egyptian clover and Sudan grass plantlets

  • Artetxe, U., Garcia-Plazaola, J.I., Hernandez, A., and Becerril, J.M. (2002) Low light grown duckweed plants are more protected against the toxicity induced by Zn and Cd. Plant Physiol. Biochem., 40, 859-863.
  • Atienzar, F.A. and Jha, A.N., (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat. Res., 613, 76-102.
  • Atienzar, F.A., Venier, P. and Jha, A.N. (2002) Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutat. Res., 521, 151-163.
  • Barcelo, J., Vazquez, M.D. and Poschenrieder, C. (1988) Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.). New Phytologist, 108, 37-49.
  • Bates, L.S., Waldren, R.P. and Teare, I.D. (1973) Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205-207.
  • Buege, J.A. and Aust, S.D. (1978) Microsomal lipid peroxidation. Methods Enzymol., 52, 302-310.
  • Cenkci, S., Yildiz, M., Cigerci, I., Konuk, M. and Bozdag, A. (2009) Toxic chemicals-induced gentoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. Chemosphere, 76, 900-906.
  • Chen, F., Wu, F.B., Dong, J., Vinczx, E., Zhang, G.P., Wang, F., Huang, Y.Z. and Kang, W. (2007) Cadmium translocation and accumulation in developing barley grains. Planta, 227, 223-232.
  • Daud, M.K., Variath, M.T., Ali, S., Najeeb, U., Jamil, M., Hayat, Y., Dawood, M., Khand, M.I., Zaffar, M., Cheemad, S.A., Tonga X.H., and Zhu, S. (2009) Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative. J. Hazard. Mater., 168, 614-625.
  • de la Rosa, G., Peralta-Videa, J.R., Montes, M., Parsons, J.G., Cano-Aguilera, I. and Gardea-Torresdey, J.L. (2004) Cadmium uptake and translocation tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere, 55, 1159-1168.
  • Dinakar, N., Nagajyothi, P.C., Suresh, S., Udaykiran, Y. and Damodharam, T. (2008) Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. J. Environ. Sci., 20, 199-206.
  • Di Cagno, R., Guidi, L., Stefani, A. and Soldatini, G.F. (1999) Effects of cadmium on growth of Helianthus annus seedlings: physiological aspects. New Phytol., 144, 65-71.
  • Dixit, V., Pandey, V. and Shyam, R. (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J. Exp. Bot., 52, 1101-1109.
  • Gzyl, J., Przymusinski, R. and Gwozdz, E.A. (2009) Ultrastructure analysis of cadmium-tolerant and -sensitive cell lines of cucumber (Cucumis sativus L.). Plant Cell Tiss Organ Cult., 99, 227-232.
  • Gill, S.S., Khana, N.A. and Tutejab, N. (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci., 182, 112-120.
  • Gupta, M., Sharma, P., Sarin, N.B. and Sinha, A.K. (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere, 74, 1201-1208.
  • Hayat, S., Ali, B., Aiman, S. and Ahmad, H.A. (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ. Exp. Bot., 60, 33-41.
  • Hsu, Y.T. and Kao, C.H. (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ., 26, 867-874.
  • Jiang, H.M., Yang, J.C. and Zhang, J.F. (2007) Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ. Pollut., 147, 750-756.
  • Kupper, H.I., Spiller, M., Kupper, F.C. and Ondrej, P. (2002) Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J. Phycol., 38, 429-441.
  • Lichtenthaler, H.K. (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol., 148, 350-382.
  • Liu, W., Li, P., Qi, X., Zhou, Q., Zheng, L., Sun, T.H. and Yang, Y.S. (2005) DNA changes in barely (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD. Chemosphere, 61, 158-167.
  • Liu, W., Yang, Y.S., Li, P.J., Zhou, Q.X., Xie, L.J. and Han, Y.P. (2009) Risk assessment of cadmium contaminated soil on plant DNA damage using RAPD and physiological indices. J. Hazard. Mater., 161, 878-883.
  • Liu, Z., Chen, W. and He, X. (2011) Cadmium-induced changes in growth and antioxidative mechanisms of a medicine plant (Lonicera japonica Thunb.) J. Medicinal Plants Res., 5, 1411-1417.
  • Lozano-Rodriguez, E., Hernandez, L. E., Bonay, P. and. Carpena-Ruiz, R. O. (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J. Exp. Bot., 48, 123-128.
  • McGrath, S.P., Zhao, F.J. and Lombi, E. (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv. Agron., 75, 1-56.
  • Miller, J.F., Green, C.E., Li, Y.M. and Chaney, R.L. (2006) Registration of three low cadmium (HA 448, HA 449, and RHA 450) confection sunflower genetic stocks. Crop Sci., 46, 489-490.
  • Mohamed, A.A, El-Beltagi, H.S. and Rashed, M.M. (2009) Cadmium stress induced change in some hydrolytic enzymes, free radical formation and ultrastructural disorders in radish plant. EJEAF Chem., 8, 969-983.
  • Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant., 15, 473-497.
  • Nanda-Kumar, P.B.A., Dushenkov, V., Motto, H. and Raskin, I. (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol., 29, 1232-1238.
  • Nelson, J.R., Lawrence, C.W. and Hinkle, D.C. (1996) Thymine-thymine dimer bypass by yeast DNA-polymerase-zeta. Science, 272, 1646-1649.
  • Sandalio, L.M., Dalurzo, H.C., G?mez, M., Romero-Puertas, M.C., and del Rio, L.A. (2001) Cadmium-induces changes in the growth and oxidative metabolism of pea Plants. J. Exp. Bot., 52, 2115-2126.
  • Shah, K., Kumar, R.G., Verma, S. and Dubey, R.S. (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci., 161, 1135-1141.
  • Shamsi, I.H., Wei, K., Zhang, G.P., Jilani, G. and Hassan, M.J. (2008) Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biol. Plant, 52, 165-169.
  • Snedecor, G.W. and Cochran, G.W. (1980) Statistical Methods, 7th edition. The Iowa State, University Press, Ames, Iowa.
  • Sun, Y.B. Zhou, Q.X. Wang, L. and Liu, W.T. (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator, J. Hazard. Mater., 161, 808-814.
  • Tamas, L., Dudikova, J., Durcekova, K., Haluskov, L.u., Huttova, J., Mistrik, I. and Olle, M. (2008) Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J. Plant Physiol., 165, 1193-1203.
  • Theodorakis, C.W., Lee, K.L., Adams, S.M. and Law, C.B. (2006) Evidence of altered gene flow, mutation rate, and genetic diversity in redbreast sunfish from a pulp-mill-contaminated river. Environ. Sci. Technol., 40, 377-386.
  • Tian, S.K., Lu, L.L., Zhang, J., Wang, K., Brown, P.H., He, Z.L., Liang, J. and Yang, X.E. (2011) Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere, 84, 63-69.
  • Torres, M.A., Barros, M.P., Campos, S.C.G., Pinto, E., Rajamani, S., Sayre, R.T. and Colepicolo, P. (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol. Environ. Saf., 71, 1-15.
  • Torres, E., Cid, A., Herrero, C. and Abalde, J. (2000) Effect of cadmium on growth, ATP content, carbon fixation and ultrastructure in the marine diatom Phaeodactylum tricornutum Bohlin. Water Air Soil Poll., 117,1-14.
  • Veltman, K., Huijbregts, M.A.J. and Hendriks, A.J. (2008) Cadmium bioaccumulation factors for terrestrial species: application of mechanistic bioaccumulation model OMEGA to explain field data. Sci. Total Environ., 406, 413-418.
  • Verbruggen, N., Hermans, C. and Schat, H. (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol., 181, 759-776.
  • Williams, J., Kubelik, A.R. and Livak, K.J. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res., 18, 6531-6535.
  • Xu, J., Yin, H.X. and Li, X. (2009) Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep., 28, 325-333.
  • Y?lmaz, D.D. and Parlak, K.U. (2011) Changes in proline accumulation and antioxidative enzyme activities in Groenlandia densa under cadmium stress. Ecological Indicators, 11, 417-423.
  • Zhao, Y. (2011) Cadmium accumulation and antioxidative defenses in leaves of Triticum aestivum L. and Zea mays L. Afr. J. Biotech., 10, 2936-2943.
Еще
Статья научная