Application of fictitious discrete models with variable characteristic dimensions in calculations for the strength of composite bodies
Автор: Matveev A.D.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Informatics, computer technology and management
Статья в выпуске: 4 vol.22, 2021 года.
Бесплатный доступ
To analyze the stress-strain state of homogeneous and composite bodies (CB), the method of multigrid finite elements (MMFE) is effectively applied, which uses multigrid finite elements (MgFE). MMFE gener-ates multigrid discrete models of small dimension, in which the inhomogeneous structure of bodies is taken into account within the framework of a micro-approach using MgFE. Basic discrete models (BM), taking into account the heterogeneous structure of bodies, have a high dimension. To reduce the dimensionality of discrete models of bodies, MMFE is used. However, there are BM CB (for example, BM bodies with a mi-cro-inhomogeneous structure), which have such a high dimension that the implementation of MMFE for such BM, due to limited computer resources, is difficult. In addition, for multigrid discrete models of high dimension, the MMFE generates numerically unstable solutions, which is associated with the error of com-puter calculations. To solve these problems, it is proposed here to use fictitious discrete models in calcula-tions, the peculiarity of which is that their dimensions are smaller than the dimensions of BM CB. In this paper, we propose a method of fictitious discrete models (MFDM) for calculating the static strength of elastic composite bodies with an inhomogeneous, micro-inhomogeneous regular structure. MFDM is implemented using MMFE with adjusted strength conditions application which takes into ac-count the error of approximate solutions. The MFDM is based on the position that the solutions that meet the BM CB differ little from the exact ones, i. e. we consider these solutions to be accurate. The calculation of CB by MFDM is reduced to the construction and calculation of the strength of ficti-tious discrete models (FM), which have the following properties. FM reflecst: the shape, characteristic dimensions, fastening, loading and type of inhomogeneous structure of the CB, and the distribution of elas-tic modulus corresponding to BM CB. The dimensions of FM are smaller than the dimensions of BM CB. The sequence consisting of FM converges to BM, i. e. the limiting FM coincides with BM. Calculations show that the convergence of such a sequence ensures uniform convergence of the maximum equivalent stresses of the FM to the maximum equivalent stress of the BM CB, which allows the application of such FM in the calculations of elastic bodies for strength. Two types of FM are considered. The first type is scaled FM; the second type is FM with variable char-acteristic sizes. In this paper, the FM of the second type is considered in detail. Calculations show that the implementation of MMFE for FM with one, two or three variable characteristic sizes leads to a large sav-ing of computer resources, which allows the use of MFDM for bodies with a micro-inhomogeneous regular structure. Calculations for the strength of CB according to MFDM require several times less computer memory than a similar calculation using BM CB, and does not contain a procedure for grinding BM. The given example of calculating the strength of a three-dimensional composite beam according to MFDM us-ing FM with three variable characteristic dimensions shows its high efficiency.
Elasticity, composites, adjusted strength conditions, fictitious discrete models, multigrid finite elements
Короткий адрес: https://sciup.org/148329594
IDR: 148329594 | DOI: 10.31772/2712-8970-2021-22-4-624-635
Список литературы Application of fictitious discrete models with variable characteristic dimensions in calculations for the strength of composite bodies
- Pisarenko G. S., Yakovlev A. P., Matveev V. V. Spravochnik po soprotivleniyu materialov [Handbook of resistance materials’]. Kiev, Nauk. Dumka Publ., 1975, 704 p.
- Birger I. A., Shorr B. F., Iosilevich G. B. Raschet na prochnost’ detalej mashin [Calculation of the strength of machine parts]. Moscow, Mashinostroenie Publ., 1993, 640 p.
- Moskvichev V. V. Osnovy konstrukcionnoy prochnosti tekhnicheskih sistem i inzhenernyh sooruzheniy [Fundamentals of structural strength of technical systems and engineering structures]. Novosibirsk, Nauka Publ., 2002, 106 p.
- Matveev A. D. [Calculation of elastic structures using the adjusted terms of strength]. Izvestiya AltGU. 2017, No. 4, P. 116–119. Doi: 10.14258/izvasu (2017)4-21.
- Matveev A. D. [The method of multigrid finite elements in the calculations of threedimensional homogeneous and composite bodies]. Uchen. zap. Kazan. un-ta. Seriia: Fiz. - matem. Nauki. 2016, Vol. 158, Is. 4, P. 530–543 (In Russ.).
- Matveev A. D. [Multigrid method for finite elements in the analysis of composite plates and beams]. Vestnik KrasGAU. 2016, No. 12, P. 93–100 (In Russ.).
- Matveev A. D. Multigrid finite element method in stress of three-dimensional elastic bodies of heterogeneous structure. IOP Conf, Ser.: Mater. Sci. Eng. 2016, Vol. 158, No. 1, Art. 012067, P. 1–9.
- Matveev A. D. [Multigrid finite element Method in the calculations of composite plates and beams of irregular shape]. The Bulletin of KrasGAU. 2017, No. 11, P. 131–140.
- Matveev A. D. [Multigrid finite element Method]. The Bulletin of KrasGAU. 2018, No. 2, P. 90–103 (In Russ.).
- Matveev A. D. [The method of. multigrid finite elements of the composite rotational and bi-curved shell calculations]. The Bulletin of KrasGAU. 2018, No. 3, P. 126–137 (In Russ.).
- Matveev A. D. [Method of. multigrid finite elements to solve physical boundary value problems]. Information technologies and mathematical modeling. Krasnoyarsk, 2017, P. 27–60.
- Matveev A. D. [Some approaches of designing elastic multigrid finite elements]. VINI-TI Proceedings. 2000, No. 2990-B00, P. 30 (In Russ.).
- Matveev A. D. [Mixed discrete models in the analysis of elastic three-dimensional in-homogeneous bodies of complex shape]. Vestnik PNIPU. Mekhanika. 2013, No. 1, P. 182–195 (In Russ.).
- Matveev A. D. [Multigrid modeling of composites of irregular structure with a small filling ratio]. J. Appl. Mech. Tech. Phys. 2004, No. 3, P. 161–171 (In Russ.).
- Matveev A. D. [The construction of complex multigrid finite element heterogeneous and micro-inhomogeneities in structure]. Izvestiya AltGU. Seriya: Matematika i mekhanika. 2014, No. 1/1, P. 80–83 (In Russ.). Doi: 10.14258/izvasu (2014)1.1-18.
- Matveev A. D. [Method of generating finite elements]. The Bulletin of KrasGAU. 2018, No. 6, P. 141–154 (In Russ.).
- Matveev A. D. [Construction of multigrid finite elements to calculate shells, plates and beams based on generating finite elements]. PNRPU Mechanics Bulletin. 2019, No. 3, P. 48–57 (In Russ.). Doi: 10/15593/perm.mech/2019.3.05.
- Fudzii T., Dzako M. Mekhanika razrusheniya kompozicionnyh materialov [Fracture mechanics of composite materials]. Moscow, Mir Publ., 1982, 232 p.
- Golushko S. K., Nemirovskij Y. V. Pryamye i obratnye zadachi mekhaniki uprugih kompozitnyh plastin i obolochek vrashcheniya [Direct and inverse problems of mechanics of elastic composite plates and shells of rotation]. Moscow, FIZMATLIT Publ., 2008, 432 p.
- Nemirovskij Y. V., Reznikov B. S. Prochnost' elementov konstrukciy iz kompozitnyh materiallov [Strength of structural elements made of composite materials]. Novosibirsk, Nau-ka Publ., 1984, 164 p.
- Kravchuk A. S., Majboroda V. P., Urzhumcev Y. S. Mekhanika polimernyh i kompozicionnyh materialov [Mechanics of polymer and composite materials]. Moscow, Nau-ka Publ., 1985, 201 p.
- Alfutov N. A., Zinov’ev A. A., Popov B. G. Raschet mnogoslojnyh plastin i obolochek iz kompozicionnyh materialov [Calculation of multilayer plates and shells made of composite materials]. Moscow, Mashinostroenie Publ., 1984, 264 p.
- Pobedrya B. E. Mekhanika kompozicionnyh materialov [Mechanics of composite mate-rials]. Moscow, MGU Publ., 1984, 336 p.
- Andreev A. N., Nemirovskij Y. V. Mnogosloynye anizotropnye obolochki i plastiny. Izgib, ustoychivost’, kolebaniya [Multilayer anisotropic shells and plates. Bending, stability, vibration]. Novosibirsk, Nauka Publ., 2001, 288 p.
- Vanin G. A. Mikromekhanika kompozicionnyh materialov [Micromechanics of compo-site materials]. Kiev, Naukova dumka Publ., 1985, 302 p.
- Vasil’ev V. V. Mekhanika konstrukciy iz kompozicionnyh materialov [Mechanics of structures made of composite materials]. Moscow, Mashinostroenie Publ., 1988, 269 p.
- Matveev A. D. [The method of fictitious discrete models in calculations bodies with in inhomogeneous regular structure]. Siberion Aerospace Journal. 2021, Vol. 22, No. 2. P. 244–260. (In Russ.) Doi: 10.31772/2712-8970-2021-22-2-244-260.
- Samul’ V. I. Osnovy teorii uprugosti i plastichnosti [Fundamentals of the theory of elasticity and plasticity]. Moscow, Vysshaia shkola Publ., 1982, 264 p.
- Norri D., de Friz Zh. Vvedenie v metod konechnykh elementov [Introduction to the fi-nite element method]. Moscow, Mir Publ., 1981, 304 p.
- Zenkevich O. Metod konechnykh elementov v tekhnike [Finite element method in ingi-neering]. Moscow, Mir Publ., 1975, 544 p.