Application of fluxes for melting and processing of aluminum alloys
Автор: Turakhujaeva Sh.N., Turakhodjaeva F.N., Abdurakhmanov Kh.Z., Karimov K.A., Turakhodjaev N.J., Obidov Z.R., Mirmuhamedov M.M., Sharipov Ja.H., Komolov Kh., Abduvaliev A.M.
Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu
Рубрика: Исследования. Проектирование. Опыт эксплуатации
Статья в выпуске: 1 т.18, 2025 года.
Бесплатный доступ
This article explores of the effect of the composition of the protective flux on the melting process of aluminum alloys and their mechanical properties. Experimental studies have been carried out with various flux compositions in order to optimize the melting process and improve the quality of the alloys obtained. The results showed that the change in the composition of the flux has a significant effect on the structure of the alloy and its mechanical characteristics. Optimization of the flux composition can lead to improved strength, corrosion resistance and other important properties of the alloy. The results obtained can be used in the metallurgical industry to optimize the melting process of aluminum alloys and improve the quality of products.
Аluminum alloys, melting process, composition of the flux, conducting of the flux, alloys structure, mechanical properties
Короткий адрес: https://sciup.org/146283038
IDR: 146283038
Список литературы Application of fluxes for melting and processing of aluminum alloys
- Daniel B., Hussam J. The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. International Journal of Thermo fluids. 2020.V. 1–2. 100007. doi.org/10.1016/j.ijft.2019.100007.
- Obidov Z.R., Ganiev I. N. Anodic behavior and oxidation of the thallium alloyed Al+2.18 % Fe alloy. Russian Journal of Applied Chemistry. 2012. 85(11). 1691–1694.
- Turakhodjaev N., Shukhrat C. Ways to increase the strength of the surface of the parts. Journal of Critical Reviews. 2020. 7(11). 380–386.
- Obidov Z. R. Thermophysical properties and thermodynamic functions of the beryllium, magnesium and praseodymium alloyed Zn‑55Al alloy. High Temperature. 2017. 55(1). 150–153. doi: 10.1134/S 0018151X17010163.
- Turakhodjaev N.D., Yakubov L. E., Tursunov S. Mathematical model of heat treatment to improve TX mechanical properties. Composite materials. 2018. 43–52.
- Obidov Z. R. Effect of pH on the anodic behavior of beryllium and magnesium doped alloy Zn55Al. Russian Journal of Applied Chemistry. 2015. 88(9). 1451–1457.
- Turakhodjaeva F.N., Turakhodjaev N. D. The process of developing a technology for extracting copper and other nonferrous metals from industrial slags. Corporate Governance: Theory and Practice. Collection of scientific papers on. 2019. 23. 363–364.
- Obidov Z.R., Amonova A. V., Ganiev I. N. Influence of the pH of the medium on the anodic behavior of scandium — doped Zn55Al alloy. Russian Journal of Non-Ferrous Metals. 2013. 54(3). 234–238. doi:10.3103/S 1067821213030115.
- Turakhodjaev N., Tashbulatov Sh., Zokirov R., Tursunbaev S., Baydullaev A. Studying the scientific and technological bases for the processing of dumping copper and aluminum slags. Journal of Critical Reviews. 2020. 7(11). doi.org/10.31838/jcr.07.11.79
- Obidov Z. R. Anodic behavior and oxidation of strontium — doped Zn5Al and Zn55Al alloys. Protection of Metals and Physical Chemistry of Surfaces. 2012. 48(3). 352–355.
- Tursunbaev S., Turakhodjaev N., Turakhujaeva Sh., Ozodova Sh. Reduction of gas porosity when alloying A000 grade aluminum with lithium fluoride. IOP Conference Series Earth and Environmental Science. 2022. 1076(1). 012076. doi:10.1088/1755–1315/1076/1/012076.
- Firuzi H., Jobirov U. R., Obidov Z. R. Effect of neodymium and erbium on the kinetics oxidation of Zn0.5Al zinc alloy, in solid state. Journal of Siberian Federal University. Engineering & Technologies. 2022. 15(5). 561–568. doi:10.17516/1999–494X‑0417.
- Sharipov J. Kh., Aliev F. A., Ganiev I. N., Obidov Z. R. Anodic behavior and oxidation of thallium–containing alloy Zn22Al. Inorganic Materials 2023. 59. 475–480.
- Obidov Z.R., Amonova A. V., Ganiev I. N. Effect of scandium doping on the oxidation resistance of Zn5Al and Zn55Al alloys. Russian Journal of Physical Chemistry A. 2013. 87(4). 702–703. doi:10.1134/S 0036024413040201.
- Mirmuhamedov M.M., Jobirov U. R., Obidov Z. R. Anodic behavior of Zn22Al alloy, doped with erbium. Journal of Siberian Federal University. Engineering & technologies. 2023. 16. 354–362.
- Sharipov J.H., Hakimov I. B., Obidov Z. R. The influence of thallium additives on the kinetics of oxidation of the Zn22Al alloy. Journal of Siberian Federal University. Engineering & Technologies. 2023. 16. 369–370.
- Utigard T.A., Roy R. R., Friesen K. Properties of fluxes used in molten aluminium processing. High Temperature Materials and Processes. 2001. 20(3–4). doi:10.1515/HTMP.2001.20.3–4.303.
- Omid M., Shabestari, S.G., Mohamad R. Aboutalebi study of fluxing temperature in molten aluminum refining process. Journal of Materials Processing Technology. 2007. 182(1). 450–455. doi:10.1016/j. jmatprotec. 2006.09.003.
- Silny A.H., Utigard T. A. Light Metals. Warrendale, PA: TMS. 1997. 871–878.
- Peterson R. D. Recycling of metals and engineering materials. Warrendale, PA: TMS. 1990. 69–84.
- Utigard T.A., Togur, J.M., Friesen K. Grjotheim. Canadian Metall. 1987. 26. 129–135.
- Utigard T.A., Toguri J. M. Metall. Trans. B. 1987. 18. 695–702.
- Davies B.R., Thompson W. T. Proceedings of the International Symposium on Extraction Refining, and Fabrication of Light Metals. Ottawa, Canada: CIM. 1991. 191–201.
- Karakaya I., Thompson W. T., J. Electrochem Soc. 1986. 133. 702–706.
- Turakhujaeva S., Karimov K., Turakhodjaev N., Akhmedov A. Mathematical modeling of quantitative changes in hydrogen and oxide inclusions in aluminum alloy. E 3S Web of Conferences. doi:10.1051/e3sconf/202336505016.